Coercive Fields Above 6 T in Two Cobalt(II)–Radical Chain Compounds
Dr. Xiaoqing Liu
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiaowen Feng
Department of Chemistry, University of California, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Katie R. Meihaus
Department of Chemistry, University of California, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorXixi Meng
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYuan Zhang
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorLiang Li
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Jun-Liang Liu
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorProf. Dr. Kasper S. Pedersen
Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
Search for more papers by this authorDr. Lukas Keller
Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Shi
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Yi-Quan Zhang
Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Peng Cheng
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jeffrey R. Long
Department of Chemistry, University of California, Berkeley, CA, 94720 USA
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720 USA
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorDr. Xiaoqing Liu
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Xiaowen Feng
Department of Chemistry, University of California, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Katie R. Meihaus
Department of Chemistry, University of California, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorXixi Meng
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYuan Zhang
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorLiang Li
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Jun-Liang Liu
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorProf. Dr. Kasper S. Pedersen
Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
Search for more papers by this authorDr. Lukas Keller
Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Wei Shi
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorProf. Dr. Yi-Quan Zhang
Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Peng Cheng
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jeffrey R. Long
Department of Chemistry, University of California, Berkeley, CA, 94720 USA
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720 USA
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
Search for more papers by this authorAbstract
Lanthanide permanent magnets are widely used in applications ranging from nanotechnology to industrial engineering. However, limited access to the rare earths and rising costs associated with their extraction are spurring interest in the development of lanthanide-free hard magnets. Zero- and one-dimensional magnetic materials are intriguing alternatives due to their low densities, structural and chemical versatility, and the typically mild, bottom-up nature of their synthesis. Here, we present two one-dimensional cobalt(II) systems Co(hfac)2(R-NapNIT) (R-NapNIT=2-(2′-(R-)naphthyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, R=MeO or EtO) supported by air-stable nitronyl nitroxide radicals. These compounds are single-chain magnets and exhibit wide, square magnetic hysteresis below 14 K, with giant coercive fields up to 65 or 102 kOe measured using static or pulsed high magnetic fields, respectively. Magnetic, spectroscopic, and computational studies suggest that the record coercivities derive not from three-dimensional ordering but from the interaction of adjacent chains that compose alternating magnetic sublattices generated by crystallographic symmetry.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202002673-sup-0001-misc_information.pdf8.1 MB | Supplementary |
ange202002673-sup-0001-Movie_S1.avi29.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1D. C. Jiles, Introduction to Magnetism and Magnetic Materials, Apple Academic Press Inc., Oakville, 2015.
10.1201/b18948 Google Scholar
- 2
- 2aM. S. Walmer, C. H. Chen, M. H. Walmer, IEEE Trans. Magn. 2000, 36, 3376–3381;
- 2bT. Kawai, B. M. Ma, S. G. Sankar, W. E. Wallace, J. Appl. Phys. 1990, 67, 4610–4612;
- 2cR. Kütterer, H.-R. Hilzinger, H. Kronmüller, J. Magn. Magn. Mater. 1977, 4, 1–7.
- 3
- 3aK. M. Krishnan, Fundamentals and Applications of Magnetic Materials, Oxford University Press, New York, 2016;
10.1093/acprof:oso/9780199570447.001.0001 Google Scholar
- 3bS. M. Girvin, K. Yang, Modern Condensed Matter Physics, Cambridge University Press, Cambridge, 2019.
10.1017/9781316480649 Google Scholar
- 4
- 4aR. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature 1993, 365, 141–143;
- 4bD. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford University Press, Oxford, 2006;
- 4cR. A. Layfield, M. Muralee, Lanthanides and Actinides in Molecular Magnetism, Wiley-VCH, Weinheim, 2015.
10.1002/9783527673476 Google Scholar
- 5
- 5aA. Caneschi, D. Gatteschi, N. Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A. Rettori, M. G. Pini, M. A. Novak, Angew. Chem. Int. Ed. 2001, 40, 1760–1763;
10.1002/1521-3773(20010504)40:9<1760::AID-ANIE17600>3.0.CO;2-U CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 1810–1813;
- 5bR. Clérac, H. Miyasaka, M. Yamashita, C. Coulon, J. Am. Chem. Soc. 2002, 124, 12837–12844;
- 5c“Single-Chain Magnets: Theoretical Approach and Experimental Systems”: C. Coulon, H. Miyasaka, R. Clérac in Single-Molecule Magnets and Related Phenomena (Ed.: ), Springer, Berlin, 2006, pp. 164–206.
- 6
- 6aR. J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. Wernsdorfer, E. J. L. McInnes, L. F. Chibotaru, R. E. P. Winpenny, Nat. Chem. 2013, 5, 673–678;
- 6bJ. Liu, Y.-C. Chen, J.-L. Liu, V. Vieru, L. Ungur, J.-H. Jia, L. F. Chibotaru, Y.-H. Lan, W. Wernsdorfer, S. Gao, X.-M. Chen, M.-L. Tong, J. Am. Chem. Soc. 2016, 138, 5441–5450;
- 6cS. Demir, M. I. Gonzalez, L. E. Darago, W. J. Evans, J. R. Long, Nat. Commun. 2017, 8, 2144–2153;
- 6dC. A. P. Goodwin, F. Ortu, D. Reta, N. F. Chilton, D. P. Mills, Nature 2017, 548, 439–442;
- 6eF.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, R. A. Layfield, Science 2018, 362, 1400–1403.
- 7
- 7aJ. A. DeGayner, K. Y. Wang, T. D. Harris, J. Am. Chem. Soc. 2018, 140, 6550–6553;
- 7bN. Ishii, Y. Okamura, S. Chiba, T. Nogami, T. Ishida, J. Am. Chem. Soc. 2008, 130, 24–25;
- 7cM. G. F. Vaz, R. A. A. Cassaro, H. Akpinar, J. A. Schlueter, P. M. Lahti, M. A. Novak, Chem. Eur. J. 2014, 20, 5460–5467.
- 8R. J. Glauber, J. Math. Phys. 1963, 4, 294–307.
- 9
- 9aW. X. Zhang, R. Ishikawa, B. Breedlove, M. Yamashita, RSC Adv. 2013, 3, 3772–3798;
- 9bX. Meng, W. Shi, P. Cheng, Coord. Chem. Rev. 2019, 378, 134–150.
- 10C. Coulon, R. Clérac, W. Wernsdorfer, T. Colin, H. Miyasaka, Phys. Rev. Lett. 2009, 102, 167204.
- 11Y. Okamura, N. Ishii, T. Nogami, T. Ishida, Bull. Chem. Soc. Jpn. 2010, 83, 716–725.
- 12Y. Okamura, T. Nogami, T. Ishida, Chem. Lett. 2009, 38, 740–741.
- 13Y. Numata, K. Inoue, N. Baranov, M. Kurmoo, K. Kikuchi, J. Am. Chem. Soc. 2007, 129, 9902–9909.
- 14R. Sessoli, Angew. Chem. Int. Ed. 2008, 47, 5508–5510; Angew. Chem. 2008, 120, 5590–5592.
- 15A. A. Bukharov, A. S. Ovchinnikov, N. V. Baranov, K. Inoue, J. Phys. Condens. Matter 2010, 22, 436003.
- 16G. A. Craig, M. Murrie, Chem. Soc. Rev. 2015, 44, 2135–2147.
- 17N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini, K. S. Murray, J. Comput. Chem. 2013, 34, 1164–1175.
- 18
- 18aS. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42–55;
- 18bM. G. F. Vaz, R. A. Allão, H. Akpinar, J. A. Schlueter, S. Santos, Jr., P. M. Lahti, M. A. Novak, Inorg. Chem. 2012, 51, 3138–3145.
- 19P. J. Van Koningsbruggen, O. Kahn, K. Nakatani, Y. Pei, J. P. Renard, M. Drillon, P. Legoll, Inorg. Chem. 1990, 29, 3325–3331.
- 20“Single-Chain Magnets”: K. S. Pedersen, A. Vindigni, R. Sessoli, C. Coulon, R. Clérac in Molecular Magnetic Materials: Concepts and Applications (Eds.: ), Wiley-VCH, Hoboken, 2017, pp. 131–161.
- 21J. A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor & Francis, London, 1993.
- 22S. Dhers, H. L. C. Feltham, S. Brooker, Coord. Chem. Rev. 2015, 296, 24–44.
- 23L. Clark, G. Sala, D. D. Maharaj, M. B. Stone, K. S. Knight, M. T. F. Telling, X. Y. Wang, X. H. Xu, J. Kim, Y. B. Li, S.-W. Cheong, B. D. Gaulin, Nat. Phys. 2019, 15, 262–268.
- 24O. Mustonen, S. Vasala, E. Sadrollahi, K. P. Schmidt, C. Baines, H. C. Walker, I. Terasaki, F. J. Litterst, E. Baggio-Saitovitch, M. Karppinen, Nat. Commun. 2018, 9, 1085–1093.
- 25S.-I. Ohkoshi, K. Imoto, A. Namai, S. Anan, M. Yoshikiyo, H. Tokoro, J. Am. Chem. Soc. 2017, 139, 13268–13271.
- 26
- 26aP. Zhang, M. Perfetti, M. Kern, P. P. Hallmen, L. Ungur, S. Lenz, M. R. Ringenberg, W. Frey, H. Stoll, G. Rauhut, J. van Slageren, Chem. Sci. 2018, 9, 1221–1230;
- 26bL. F. Chibotaru, L. Ungur, J. Chem. Phys. 2012, 137, 064112.
- 27E. F. Ullman, J. H. Osiecki, D. G. B. Boocock, R. Darcy, J. Am. Chem. Soc. 1972, 94, 7049–7059.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.