Catechol-Functionalized Polyolefins
Yinna Na
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
Search for more papers by this authorCorresponding Author
Prof. Changle Chen
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
Search for more papers by this authorYinna Na
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
Search for more papers by this authorCorresponding Author
Prof. Changle Chen
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
Search for more papers by this authorAbstract
The incorporation of comonomers during ethylene polymerization can efficiently modulate important material properties of the polyolefins. Utilizing bioresourced comonomers for the generation of high-performance polyolefin materials is attractive from a sustainability point of view. In this contribution, bioresourced eugenol and related comonomers were incorporated into polyolefins through palladium-catalyzed copolymerization and terpolymerization reactions. Importantly, high-molecular-weight catechol-functionalized polyolefins can be generated. The introduction of different metal ions induces efficient interactions with the incorporated catechol groups, leading to enhanced mechanical properties and self-healing properties. Moreover, the catechol functionality can greatly improve other properties such as surface properties, adhesion properties, and compatibilizing properties. The catechol-functionalized polyolefin was demonstrated as a versatile platform polymer for accessing various materials with dramatically different properties.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202000848-sup-0001-misc_information.pdf4.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Zhu, C. Romain, C. Williams, Nature 2016, 540, 354–362.
- 2I. Takahara, M. Saito, M. Inaba, K. Murata, Catal. Lett. 2005, 105, 249–252.
- 3http://www.braskem.com/site.aspx/Im-greenTM-Polyethylene.
- 4J. Spekreijse, J. P. M. Sanders, J. H. Bitter, E. L. Scott, ChemSusChem 2017, 10, 470–482.
- 5“Polyolefins”: K. S. Whiteley, T. G. Heggs, H. Koch, R. L. Mawer, W. Immel, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. 28, 6th ed., Wiley-VCH, Weinheim, 2003, pp. 393–495.
- 6A. H. Tullo, Chem. Eng. News 2013, 91, 18–19.
- 7T. Dishisha, S. H. Pyo, R. Hatti-Kaul, Microb. Cell Fact. 2015, 14, 200–211.
- 8D. J. Walsh, M. G. Hyatt, S. A. Miller, D. Guironnet, ACS Catal. 2019, 9, 11153–11188.
- 9C. Tan, C. L. Chen, Angew. Chem. Int. Ed. 2019, 58, 7192–7200; Angew. Chem. 2019, 131, 7268–7276.
- 10A. Keyes, A. H. Basbug, E. Ordonez, U. Ha, D. B. Beezer, H. Dau, Y. S. Liu, E. Tsogtgerel, G. R. Jones, E. Harth, Angew. Chem. Int. Ed. 2019, 58, 12370–12391; Angew. Chem. 2019, 131, 12498–12520.
- 11A. Nakamura, T. M. J. Anselment, J. Claverie, B. Goodall, R. F. Jordan, S. Mecking, B. Rieger, A. Sen, P. W. N. M. van Leeuwen, K. Nozaki, Acc. Chem. Res. 2013, 46, 1438–1449.
- 12D. Takeuchi, MRS Bull. 2013, 38, 252–259.
- 13M. Chen, C. L. Chen, Angew. Chem. Int. Ed. 2020, 59, 1206–1210; Angew. Chem. 2020, 132, 1222–1226.
- 14Y. Konishi, W. J. Tao, H. Yasuda, S. Ito, Y. Oishi, H. Ohtaki, A. Tanna, T. Tayano, K. Nozaki, ACS Macro Lett. 2018, 7, 213–217.
- 15F. P. Wimmer, L. Caporaso, L. Cavallo, S. Mecking, L. Falivene, Macromolecules 2018, 51, 4525–4531.
- 16T. Liang, S. Goudari, C. L. Chen, Nat. Commun. 2020, 11, 372.
- 17Z. B. Jian, S. Mecking, Angew. Chem. Int. Ed. 2015, 54, 15845–15849; Angew. Chem. 2015, 127, 16071–16075.
- 18T. Okada, S. Park, D. Takeuchi, K. Osakada, Angew. Chem. Int. Ed. 2007, 46, 6141–6143; Angew. Chem. 2007, 119, 6253–6255.
- 19J. X. Gao, W. Cai, Y. Hu, C. L. Chen, Polym. Chem. 2019, 10, 1416–1422.
- 20T. Rünzi, S. Mecking, Adv. Funct. Mater. 2014, 24, 387–395.
- 21S. Y. Dai, C. L. Chen, Macromolecules 2018, 51, 6818–6824.
- 22P. Xiang, Z. B. Ye, Macromolecules 2015, 48, 6096–6107.
- 23G. Zhang, C. Nam, L. Petersson, J. Jämbeck, H. Hillborg, T. M. Chung, Macromolecules 2018, 51, 1927–1936.
- 24C. Zou, C. L. Chen, Angew. Chem. Int. Ed. 2020, 59, 395–402; Angew. Chem. 2020, 132, 403–410.
- 25D. G. Vassao, L. B. Davin, N. G. Lewis, H. J. Bohnert, H. T. Nguyen, Advances in Plant Biochemistry Molecular Biology, Elsevier, Amsterdam, 2008, pp. 385–428.
- 26G. Milczarek, A. Ciszewski, Colloids Surf. B 2012, 90, 53–57.
- 27M. C. Djunaidi, J. D. Siswanta, M. Ulbricht, Indones. J. Chem. 2015, 15, 305–314.
- 28G. Boiteux-Steffan, Q. T. Pham, Macromol. Chem. Phys. 1984, 185, 877–890.
- 29L. R. Parisi, D. M. Scheibel, S. Lin, E. M. Bennett, J. M. Lodge, M. J. Miri, Polymer 2017, 114, 319–328.
- 30M. Krogsgaard, V. Nue, H. Birkedal, Chem. Eur. J. 2016, 22, 844–857.
- 31M. A. Rahim, S. L. Kristufek, S. J. Pan, J. J. Richardson, F. Caruso, Angew. Chem. Int. Ed. 2019, 58, 1904–1927; Angew. Chem. 2019, 131, 1920–1945.
- 32H. Lee, N. F. Scherer, P. B. Messersmith, Proc. Natl. Acad. Sci. USA 2006, 103, 12999–13003.
- 33E. Filippidi, T. R. Cristiani, C. D. Eisenbach, J. H. Waite, J. N. Israelachvili, B. K. Ahn, M. T. Valentine, Science 2017, 358, 502–505.
- 34Y. N. Na, D. Zhang, C. L. Chen, Polym. Chem. 2017, 8, 2405–2409.
- 35L. H. Sperling, Introduction to physical polymer science, Wiley, New York, 2005.
10.1002/0471757128 Google Scholar
- 36D. Y. Sang, J. Tian, X. D. Tu, Z. J. He, M. Yao, Synthesis 2019, 51, 704–712.
- 37J. Heo, T. Kang, S. G. Jang, D. S. Hwang, J. M. Spruell, K. L. Killops, J. H. Waite, C. J. Hawker, J. Am. Chem. Soc. 2012, 134, 20139–20145.
- 38H. Takeshima, K. Satoh, ACS Sustainable Chem. Eng. 2018, 6, 13681–13686.
- 39 Handbook of Thermoset Plastics (Eds.: ), Elsevier, Amsterdam, 2014.
- 40Y. N. Na, S. Y. Dai, C. L. Chen, Macromolecules 2018, 51, 4040–4048.
- 41X. Q. Hu, X. Ma, Z. B. Jian, Polym. Chem. 2019, 10, 1912–1919.
- 42N. Holten-Andersen, M. J. Harrington, H. Birkedal, B. P. Lee, P. B. Messersmith, K. Y. C. Lee, J. H. Waite, Proc. Natl. Acad. Sci. USA 2011, 108, 2651–2655.
- 43M. J. Harrington, A. Masic, N. Holten-Andersen, J. H. Waite, P. Fratzl, Science 2010, 328, 216–220.
- 44D. E. Fullenkamp, D. G. Barrett, D. R. Miller, J. W. Kurutz, P. Messersmith, RSC Adv. 2014, 4, 25127–25134.
- 45M. J. Sever, J. T. Weisser, J. Monahan, S. Srinivasan, J. J. Wilker, Angew. Chem. Int. Ed. 2004, 43, 448–450; Angew. Chem. 2004, 116, 454–456.
- 46D. G. Barrett, D. E. Fullenkamp, L. He, N. Holten-Andersen, K. Y. C. Lee, P. B. Messersmith, Adv. Funct. Mater. 2013, 23, 1111–1119.
- 47J. P. Park, I. T. Song, J. Lee, J. H. Ryu, Y. Lee, H. Lee, Chem. Mater. 2015, 27, 105–111.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.