Chiral Phosphoric Acid Dual-Function Catalysis: Asymmetric Allylation with α-Vinyl Allylboron Reagents
Shang Gao
Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849 USA
These authors contributed equally to this work.
Search for more papers by this authorMeng Duan
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Kendall N. Houk
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Ming Chen
Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849 USA
Search for more papers by this authorShang Gao
Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849 USA
These authors contributed equally to this work.
Search for more papers by this authorMeng Duan
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Kendall N. Houk
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Ming Chen
Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849 USA
Search for more papers by this authorDedicated to Professor William R. Roush
Abstract
We report a dual function asymmetric catalysis by a chiral phosphoric acid catalyst that controls both enantioselective addition of an achiral α-vinyl allylboronate to aldehydes and pseudo-axial orientation of the α-vinyl group in the transition state. The reaction produces dienyl homoallylic alcohols with high Z-selectivities and enantioselectivities. Computational studies revealed that minimization of steric interactions between the alkyl groups of the diol on boron and the chiral phosphoric acid catalyst influence the orientation of α-vinyl substituent of the allylboronate reagent to occupy a pseudo-axial position in the transition state.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202000039-sup-0001-misc_information.pdf23.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Lachance, D. G. Hall, Org. React. 2008, 73, 1;
- 1bC.-H. Ding, X.-L. Hou, Chem. Rev. 2011, 111, 1914;
- 1cM. Yus, J. C. González-Gómez, F. Foubelo, Chem. Rev. 2011, 111, 7774;
- 1dM. Yus, J. C. González-Gómez, F. Foubelo, Chem. Rev. 2013, 113, 5595;
- 1e Science of Synthesis: Advances in Organoboron Chemistry towards Organic Synthesis (Ed.: ), Thieme, Stuttgart, 2019.
- 2
- 2aM. Shibasaki, M. Kanai, Chem. Rev. 2008, 108, 2853;
- 2bS. Yamasaki, K. Fujii, R. Wada, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2002, 124, 6536;
- 2cR. Wada, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 8910;
- 2dR. Yazaki, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2009, 131, 3195;
- 2eR. Yazaki, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 5522;
- 2fS.-L. Shi, L.-X. Xu, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 6638;
- 2gX.-F. Wei, X.-W. Xie, Y. Shimizu, M. Kanai, J. Am. Chem. Soc. 2017, 139, 4647.
- 3
- 3aJ. Feng, Z. A. Kasun, M. J. Krische, J. Am. Chem. Soc. 2016, 138, 5467;
- 3bI. S. Kim, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc. 2008, 130, 6340;
- 3cI. S. Kim, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc. 2008, 130, 14891;
- 3dI. S. Kim, S. B. Han, M. J. Krische, J. Am. Chem. Soc. 2009, 131, 2514;
- 3eJ. R. Zbieg, E. Yamaguchi, E. L. McInturff, M. J. Krische, Science 2012, 336, 324.
- 4
- 4aM. Holmes, L. A. Schwartz, M. J. Krische, Chem. Rev. 2018, 118, 6026;
- 4bE. L. McInturff, E. Yamaguchi, M. J. Krische, J. Am. Chem. Soc. 2012, 134, 20628;
- 4cL. M. Geary, S. K. Woo, J. C. Leung, M. J. Krische, Angew. Chem. Int. Ed. 2012, 51, 2972; Angew. Chem. 2012, 124, 3026;
- 4dF. Meng, F. Haeffner, A. H. Hoveyda, J. Am. Chem. Soc. 2014, 136, 11304;
- 4eY. Yang, I. B. Perry, G. Lu, P. Liu, S. L. Buchwald, Science 2016, 353, 144;
- 4fK. D. Nguyen, D. Herkommer, M. J. Krische, J. Am. Chem. Soc. 2016, 138, 5238;
- 4gY. Xiong, G. Zhang, J. Am. Chem. Soc. 2018, 140, 2735;
- 4hR. Y. Liu, Y. Zhou, Y. Yang, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 2251;
- 4iC. Li, R. Y. Liu, L. T. Jesikiewicz, Y. Yang, P. Liu, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 5062;
- 4jS. Gao, M. Chen, Chem. Sci. 2019, 10, 7554;
- 4kS. Gao, M. Chen, Chem. Commun. 2019, 55, 11199.
- 5
- 5aJ. W. A. Kinnaird, P. Y. Ng, K. Kubota, J. L. Leighton, J. Am. Chem. Soc. 2002, 124, 7920;
- 5bK. Kubota, J. L. Leighton, Angew. Chem. Int. Ed. 2003, 42, 946; Angew. Chem. 2003, 115, 976;
- 5cH. Kim, S. Ho, J. L. Leighton, J. Am. Chem. Soc. 2011, 133, 6517.
- 6
- 6aJ. W. J. Kennedy, D. G. Hall, J. Am. Chem. Soc. 2002, 124, 11586;
- 6bT. Ishiyama, T. Ahiko, N. Miyaura, J. Am. Chem. Soc. 2002, 124, 12414;
- 6cV. Rauniyar, D. G. Hall, J. Am. Chem. Soc. 2004, 126, 4518;
- 6dK. Sakata, H. Fujimoto, J. Am. Chem. Soc. 2008, 130, 12519;
- 6eM. Chen, W. R. Roush, J. Am. Chem. Soc. 2013, 135, 9512;
- 6fS. Gao, M. Wang, M. Chen, Org. Lett. 2018, 20, 7921;
- 6gJ. Chen, S. Gao, M. Chen, Org. Lett. 2019, 21, 4638;
- 6hJ. Liu, S. Gao, M. Chen, Tetrahedron 2019, 75, 4110;
- 6iS. Gao, J. Chen, M. Chen, Chem. Sci. 2019, 10, 3637;
- 6jJ. Liu, S. Gao, M. Chen, Org. Process Res. Dev. 2019, 23, 1659;
- 6kJ. Chen, S. Gao, M. Chen, Org. Lett. 2019, 21, 8880;
- 6lJ. Chen, S. Gao, M. Chen, Org. Lett. 2019, 21, 9893.
- 7
- 7aH. E. Zimmerman, M. D. Traxler, J. Am. Chem. Soc. 1957, 79, 1920;
- 7bR. W. Hoffmann, Angew. Chem. Int. Ed. Engl. 1982, 21, 555; Angew. Chem. 1982, 94, 569.
- 8
- 8aH. C. Brown, P. K. Jadhav, J. Am. Chem. Soc. 1983, 105, 2092;
- 8bH. C. Brown, K. S. Bhat, J. Am. Chem. Soc. 1986, 108, 293;
- 8cH. C. Brown, K. S. Bhat, J. Am. Chem. Soc. 1986, 108, 5919;
- 8dC. H. Burgos, E. Canales, K. Matos, J. A. Soderquist, J. Am. Chem. Soc. 2005, 127, 8044;
- 8eE. Canales, K. G. Prasad, J. A. Soderquist, J. Am. Chem. Soc. 2005, 127, 11572.
- 9
- 9aW. R. Roush, A. E. Walts, L. K. Hoong, J. Am. Chem. Soc. 1985, 107, 8186;
- 9bW. R. Roush, R. L. Halterman, J. Am. Chem. Soc. 1986, 108, 294;
- 9cW. R. Roush, K. Ando, D. B. Powers, A. D. Palkowitz, R. L. Halterman, J. Am. Chem. Soc. 1990, 112, 6339;
- 9dE. J. Corey, C.-M. Yu, D.-H. Lee, J. Am. Chem. Soc. 1990, 112, 878;
- 9eH. Lachance, X. Lu, M. Gravel, D. G. Hall, J. Am. Chem. Soc. 2003, 125, 10160.
- 10
- 10aV. Rauniyar, D. G. Hall, Angew. Chem. Int. Ed. 2006, 45, 2426; Angew. Chem. 2006, 118, 2486;
- 10bV. Rauniyar, H. Zhai, D. G. Hall, J. Am. Chem. Soc. 2008, 130, 8481;
- 10cV. Rauniyar, D. G. Hall, J. Org. Chem. 2009, 74, 4236.
- 11
- 11aS. Lou, P. N. Moquist, S. E. Schaus, J. Am. Chem. Soc. 2006, 128, 12660;
- 11bD. S. Barnett, P. N. Moquist, S. E. Schaus, Angew. Chem. Int. Ed. 2009, 48, 8679; Angew. Chem. 2009, 121, 8835;
- 11cR. Alam, T. Vollgraff, L. Eriksson, K. J. Szabó, J. Am. Chem. Soc. 2015, 137, 11262.
- 12P. Jain, J. C. Antilla, J. Am. Chem. Soc. 2010, 132, 11884.
- 13
- 13aD. L. Silverio, S. Torker, T. Pilyugina, E. M. Vieira, M. L. Snapper, F. Haeffner, A. H. Hoveyda, Nature 2013, 494, 216;
- 13bK. Lee, D. L. Silverio, S. Torker, F. Haeffner, D. W. Robbins, F. W. van der Mei, A. H. Hoveyda, Nat. Chem. 2016, 8, 768;
- 13cD. W. Robbins, K. Lee, D. L. Silverio, A. Volkov, S. Torker, A. H. Hoveyda, Angew. Chem. Int. Ed. 2016, 55, 9610; Angew. Chem. 2016, 128, 9762;
- 13dF. W. van der Mei, C. Qin, R. J. Morrison, A. H. Hoveyda, J. Am. Chem. Soc. 2017, 139, 9053;
- 13eN. W. Mszar, M. S. Mikus, S. Torker, F. Haeffner, A. H. Hoveyda, Angew. Chem. Int. Ed. 2017, 56, 8736; Angew. Chem. 2017, 129, 8862.
- 14
- 14aC. Diner, K. J. Szabó, J. Am. Chem. Soc. 2017, 139, 2;
- 14bL. Carosi, H. Lachance, D. G. Hall, Tetrahedron Lett. 2005, 46, 8981;
- 14cF. Peng, D. G. Hall, Tetrahedron Lett. 2007, 48, 3305;
- 14dM. Chen, D. H. Ess, W. R. Roush, J. Am. Chem. Soc. 2010, 132, 7881;
- 14eM. Chen, W. R. Roush, Org. Lett. 2010, 12, 2706;
- 14fM. Chen, W. R. Roush, J. Am. Chem. Soc. 2011, 133, 5744;
- 14gM. Chen, W. R. Roush, Org. Lett. 2013, 15, 1662.
- 15For selected references on aldehyde allylboration with enantioenriched, α-substituted allylboronates:
- 15aR. Stürmer, K. Ritter, R. W. Hoffmann, Angew. Chem. Int. Ed. Engl. 1993, 32, 101; Angew. Chem. 1993, 105, 112;
- 15bN. F. Pelz, A. R. Woodward, H. E. Burks, J. D. Sieber, J. P. Morken, J. Am. Chem. Soc. 2004, 126, 16328;
- 15cG. Y. Fang, V. K. Aggarwal, Angew. Chem. Int. Ed. 2007, 46, 359; Angew. Chem. 2007, 119, 363;
- 15dL. Carosi, D. G. Hall, Angew. Chem. Int. Ed. 2007, 46, 5913; Angew. Chem. 2007, 119, 6017;
- 15eH. E. Burks, S. Liu, J. P. Morken, J. Am. Chem. Soc. 2007, 129, 8766;
- 15fM. Binanzer, G. Y. Fang, V. K. Aggarwal, Angew. Chem. Int. Ed. 2010, 49, 4264; Angew. Chem. 2010, 122, 4360;
- 15gM. Althaus, A. Mahmood, J. R. Suarez, S. P. Thomas, V. K. Aggarwal, J. Am. Chem. Soc. 2010, 132, 4025;
- 15hL. T. Kliman, S. N. Mlynarski, G. E. Ferris, J. P. Morken, Angew. Chem. Int. Ed. 2012, 51, 521; Angew. Chem. 2012, 124, 536;
- 15iM. J. Hesse, S. Essafi, C. G. Watson, J. N. Harvey, D. Hirst, C. L. Willis, V. K. Aggarwal, Angew. Chem. Int. Ed. 2014, 53, 6145; Angew. Chem. 2014, 126, 6259.
- 16For α-alkyl substituted allylboronate, the Z/E selectivity is 2:1 typically for aldehyde allylation.
- 16aR. W. Hoffmann, U. Weidmann, J. Organomet. Chem. 1980, 195, 137;
- 16bM. Andersen, B. Hildebrandt, G. Koester, R. W. Hoffmann, Chem. Ber. 1989, 122, 1777;
- 16cR. W. Hoffmann, J. J. Wolff, Chem. Ber. 1991, 124, 563; For computational studies:
- 16dC. Gennari, E. Fioravanzo, A. Bernardi, A. Vulpetti, Tetrahedron 1994, 50, 8815.
- 17
- 17aJ. L.-Y. Chen, H. K. Scott, M. J. Hesse, C. L. Willis, V. K. Aggarwal, J. Am. Chem. Soc. 2013, 135, 5316;
- 17bJ. L.-Y. Chen, V. K. Aggarwal, Angew. Chem. Int. Ed. 2014, 53, 10992; Angew. Chem. 2014, 126, 11172.
- 18For carbonyl addition with α-hetero atom substituted allyl boronates, the selectivity Z/E is >10:1 in general.
- 18aR. W. Hoffmann, B. Landmann, Angew. Chem. Int. Ed. Engl. 1984, 23, 437; Angew. Chem. 1984, 96, 427;
- 18bE. Beckmann, D. Hoppe, Synthesis 2005, 217;
- 18cF. Berrée, N. Gernigon, A. Hercouet, C. H. Lin, B. Carboni, Eur. J. Org. Chem. 2009, 329;
- 18dS. Touchet, A. Mace, T. Roisnel, F. Carreaux, A. Bouillon, B. Carboni, Org. Lett. 2013, 15, 2712;
- 18eR. J. Morrison, F. W. van der Mei, F. Romiti, A. H. Hoveyda, J. Am. Chem. Soc. 2020, 142, 436.
- 19
- 19aM. Shimizu, H. Kitagawa, T. Kurahashi, T. Hiyama, Angew. Chem. Int. Ed. 2001, 40, 4283;
10.1002/1521-3773(20011119)40:22<4283::AID-ANIE4283>3.0.CO;2-3 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4413;
- 19bT. Miura, J. Nakahashi, M. Murakami, Angew. Chem. Int. Ed. 2017, 56, 6989; Angew. Chem. 2017, 129, 7093;
- 19cT. Miura, J. Nakahashi, W. Zhou, Y. Shiratori, S. G. Stewart, M. Murakami, J. Am. Chem. Soc. 2017, 139, 10903;
- 19dT. Miura, J. Nakahashi, T. Sasatsu, M. Murakami, Angew. Chem. Int. Ed. 2019, 58, 1138; Angew. Chem. 2019, 131, 1150.
- 20
- 20aE. M. Flamme, W. R. Roush, J. Am. Chem. Soc. 2002, 124, 13644;
- 20bJ. Kister, A. C. DeBaillie, R. Lira, W. R. Roush, J. Am. Chem. Soc. 2009, 131, 14174;
- 20cS. M. Winbush, W. R. Roush, Org. Lett. 2010, 12, 4344.
- 21
- 21aJ. Pietruszka, N. Schöne, Angew. Chem. Int. Ed. 2003, 42, 5638; Angew. Chem. 2003, 115, 5796;
- 21bJ. Pietruszka, N. Schöne, W. Frey, L. Grundl, Chem. Eur. J. 2008, 14, 5178;
- 21cY. Gehrke, C. A. Berg, R. Vahabi, J. Pietruszka, Eur. J. Org. Chem. 2016, 2413.
- 22Reagents 5 can be easily prepared in two steps from CH2Cl2. Please see SI for details. For related references, see:
- 22aR. W. Hoffmann, B. Landmann, Chem. Ber. 1986, 119, 1039;
- 22bH. C. Brown, M. V. Rangaishenvi, S. Jayaraman, Organometallics 1992, 11, 1948.
- 23
- 23aT. Akiyama, J. Itoh, D. Yokota, K. Fuchibe, Angew. Chem. Int. Ed. 2004, 43, 1566; Angew. Chem. 2004, 116, 1592;
- 23bD. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356; For selected reviews, see:
- 23cT. Akiyama, Chem. Rev. 2007, 107, 5744;
- 23dM. Terada, Chem. Commun. 2008, 4097;
- 23eT. Akiyama, K. Mori, Chem. Rev. 2015, 115, 9277.
- 24
- 24aT. Miura, Y. Nishida, M. Morimoto, M. Murakami, J. Am. Chem. Soc. 2013, 135, 11497;
- 24bC. A. Incerti-Pradillos, M. A. Kabeshov, A. V. Malkov, Angew. Chem. Int. Ed. 2013, 52, 5338; Angew. Chem. 2013, 125, 5446;
- 24cY. Huang, X. Yang, Z. Lv, C. Cai, C. Kai, Y. Pei, Y. Feng, Angew. Chem. Int. Ed. 2015, 54, 7299; Angew. Chem. 2015, 127, 7407;
- 24dP. Barrio, E. Rodriguez, K. Saito, S. Fustero, T. Akiyama, Chem. Commun. 2015, 51, 5246;
- 24eS. Gao, M. Chen, Org. Lett. 2018, 20, 6174;
- 24fT. Miura, N. Oku, M. Murakami, Angew. Chem. Int. Ed. 2019, 58, 14620; Angew. Chem. 2019, 131, 14762;
- 24gS. Gao, M. Chen, Org. Lett. 2020, 22, 400.
- 25
- 25aP. Jain, H. Wang, K. N. Houk, J. C. Antilla, Angew. Chem. Int. Ed. 2012, 51, 1391; Angew. Chem. 2012, 124, 1420;
- 25bL. R. Reddy, Org. Lett. 2012, 14, 1142;
- 25cM. Chen, W. R. Roush, J. Am. Chem. Soc. 2012, 134, 10947;
- 25dM. Wang, S. Khan, E. Miliordos, M. Chen, Org. Lett. 2018, 20, 3810.
- 26
- 26aL. R. Reddy, Chem. Commun. 2012, 48, 9189;
- 26bM. Wang, S. Khan, E. Miliordos, M. Chen, Adv. Synth. Catal. 2018, 360, 4634.
- 27
- 27aM. N. Grayson, S. C. Pellegrinet, J. M. Goodman, J. Am. Chem. Soc. 2012, 134, 2716;
- 27bH. Wang, P. Jain, J. C. Antilla, K. N. Houk, J. Org. Chem. 2013, 78, 1208;
- 27cM. N. Grayson, J. M. Goodman, J. Am. Chem. Soc. 2013, 135, 6142;
- 27dM. N. Grayson, Z. Yang, K. N. Houk, J. Am. Chem. Soc. 2017, 139, 7717.
- 28
- 28aJ. A. Dale, H. S. Mosher, J. Am. Chem. Soc. 1973, 95, 512;
- 28bI. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, J. Am. Chem. Soc. 1991, 113, 4092;
- 28cT. R. Hoye, C. S. Jeffrey, F. Shao, Nat. Protoc. 2007, 2, 2451.
- 29The rate of hydrolysis of borate products derived from the reaction of aldehydes with boronate 5 c can be slow depending on the structure of aldehyde. In these cases, boronate 5 f was used for allylboration. The borate products from these reactions were readily hydrolyzed to give alcohol products.
- 30
- 30aS. Masamune, W. Choy, J. S. Petersen, L. R. Sita, Angew. Chem. Int. Ed. Engl. 1985, 24, 1; Angew. Chem. 1985, 97, 1;
- 30bM. Chen, W. R. Roush, J. Am. Chem. Soc. 2012, 134, 3925.
- 31S. Krautwald, E. M. Carreira, J. Am. Chem. Soc. 2017, 139, 5627.
- 32
- 32aE. D. Mihelich, K. Daniels, D. J. Eickhoff, J. Am. Chem. Soc. 1981, 103, 7690;
- 32bR. W. Bates, R. Fernández-Moro, S. V. Ley, Tetrahedron Lett. 1991, 32, 2651.
- 33
- 33aA. K. Chatterjee, T.-L. Choi, D. P. Sanders, R. H. Grubbs, J. Am. Chem. Soc. 2017, 125, 11360;
- 33bG. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746.
- 34N. Takada, K. Suenaga, K. Yamada, S.-Z. Zheng, H.-S. Chen, D. Uemura, Chem. Lett. 1999, 28, 1025.
10.1246/cl.1999.1025 Google Scholar
- 35
- 35aY. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157;
- 35bY. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215;
- 35cM. Cossi, N. Rega, G. Scalmani, V. J. Barone, Comput. Chem. 2003, 24, 669;
- 35dV. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995;
- 35eA. D. Becke, J. Chem. Phys. 1993, 98, 5648;
- 35fC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 36Various DFT methods were benchmarked against experiment with the def2-tzvpp basis set: ΔΔG≠ (kcal mol−1): M062X (0.9), M062X-D3 (0.7), M11 (0.8), PBE0 (1.0), TPSSh (1.2), Exp (1.5). The calculated energy difference between TS-10 and TS-9 is in reasonable agreement with the observed Z-selectivity.
- 37
- 37aF. M. Bickelhaupt, K. N. Houk, Angew. Chem. Int. Ed. 2017, 56, 10070; Angew. Chem. 2017, 129, 10204;
- 37bD. H. Ess, K. N. Houk, J. Am. Chem. Soc. 2008, 130, 10187;
- 37cD. H. Ess, K. N. Houk, J. Am. Chem. Soc. 2007, 129, 10646.
- 38For selected references on dual-function catalysis:
- 38aD. R. Li, A. Murugan, J. R. Falck, J. Am. Chem. Soc. 2008, 130, 46;
- 38bT. A. Davis, J. C. Wilt, J. N. Johnston, J. Am. Chem. Soc. 2010, 132, 2880;
- 38cT. Yukawa, B. Seelig, Y. Xu, H. Morimoto, S. Matsunaga, A. Berkessel, M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 11988;
- 38dL. Albrecht, G. Dickmeiss, F. C. Acosta, C. Rodríguez-Escrich, R. L. Davis, K. A. Jørgenson, J. Am. Chem. Soc. 2012, 134, 2543;
- 38eF. Romiti, J. del Pozo, P. H. S. Paioti, S. A. Gonsales, X. Li, F. W. W. Hartrampf, A. H. Hoveyda, J. Am. Chem. Soc. 2019, 141, 17952.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.