Nitrenium Salts in Lewis Acid Catalysis
Corresponding Author
Dr. Meera Mehta
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Rd., Oxford, OX1 3TA UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Jose M. Goicoechea
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Rd., Oxford, OX1 3TA UK
Search for more papers by this authorCorresponding Author
Dr. Meera Mehta
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Rd., Oxford, OX1 3TA UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Jose M. Goicoechea
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Rd., Oxford, OX1 3TA UK
Search for more papers by this authorAbstract
Molecular compounds featuring nitrogen atoms are typically regarded as Lewis bases and are extensively employed as donor ligands in coordination chemistry or as nucleophiles in organic chemistry. By contrast, electrophilic nitrogen-containing compounds are much rarer. Nitrenium cations are a new family of nitrogen-based Lewis acids, the reactivity of which remains largely unexplored. In this work, nitrenium ions are explored as catalysts in five organic transformations. These reactions are the first examples of Lewis acid catalysis employing nitrogen as the site of substrate activation. Moreover, these compounds are readily accessed from commercially available reagents and exhibit remarkable stability toward moisture, allowing for benchtop transformations without the need to pretreat solvents.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201915547-sup-0001-misc_information.pdf4.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Lewis Acids in Organic Synthesis (Ed.: ), Wiley-VCH, Weinheim, 2000.
- 2J. M. Bayne, D. W. Stephan, Chem. Soc. Rev. 2016, 45, 765–774.
- 3S. S. Chitnis, J. H. W. LaFortune, H. Cummings, L. L. Liu, R. Andrews, D. W. Stephan, Organometallics 2018, 37, 4540–4544.
- 4C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W. Stephan, Science 2013, 341, 1374–1377.
- 5A. Augurusa, M. Mehta, M. Perez, J. T. Zhu, D. W. Stephan, Chem. Commun. 2016, 52, 12195–12198.
- 6M. H. Holthausen, M. Mehta, D. W. Stephan, Angew. Chem. Int. Ed. 2014, 53, 6538–6541; Angew. Chem. 2014, 126, 6656–6659.
- 7M. Mehta, I. G. de la Arada, M. Pérez, D. Porwal, M. Oestreich, D. W. Stephan, Organometallics 2016, 35, 1030–1035.
- 8M. Mehta, M. H. Holthausen, I. Mallov, M. Pérez, Z.-W. Qu, S. Grimme, D. W. Stephan, Angew. Chem. Int. Ed. 2015, 54, 8250–8254; Angew. Chem. 2015, 127, 8368–8372.
- 9V. Fasano, J. H. W. LaFortune, J. M. Bayne, M. J. Ingleson, D. W. Stephan, Chem. Commun. 2018, 54, 662–665.
- 10M. Vogler, L. Süsse, J. H. W. LaFortune, D. W. Stephan, M. Oestreich, Organometallics 2018, 37, 3303–3313.
- 11M. Yang, M. M. Hirai, F. P. Gabbaï, Dalton Trans. 2019, 48, 6685–6689.
- 12D. M. C. Ould, R. L. Melen, Chem. Eur. J. 2018, 24, 15201–15204.
- 13See Ref. [11].
- 14M. Hirai, F. P. Gabbaï, Angew. Chem. Int. Ed. 2015, 54, 1205–1209; Angew. Chem. 2015, 127, 1221–1225.
- 15B. Pan, F. P. Gabbaï, J. Am. Chem. Soc. 2014, 136, 9564–9567.
- 16D. Tofan, F. P. Gabbaï, Chem. Sci. 2016, 7, 6768–6778.
- 17M. Yang, N. Pati, G. Bélanger-Chabot, M. Hirai, F. P. Gabbaï, Dalton Trans. 2018, 47, 11843–11850.
- 18A. M. Christianson, F. P. Gabbaï, Organometallics 2017, 36, 3013–3015.
- 19M. Yang, F. P. Gabbaï, Inorg. Chem. 2017, 56, 8644–8650.
- 20M. Hirai, J. Cho, F. P. Gabbaï, Chem. Eur. J. 2016, 22, 6537–6541.
- 21T. Ollevier, Org. Biomol. Chem. 2013, 11, 2740–2755.
- 22S. Balasubramaniam, S. Kumar, A. P. Andrews, B. Varghese, E. D. Jemmis, A. Venugopal, Eur. J. Inorg. Chem. 2019, 3257–3257.
- 23S. Solyntjes, B. Neumann, H.-G. Stammler, N. Ignat'ev, B. Hoge, Chem. Eur. J. 2017, 23, 1568–1575.
- 24 The Chemistry of Diazonium and Diazo Groups, Part 2 (Ed.: ), Wiley, New York, 1978.
- 25A. F. Cockerill, R. G. Harrison, The Chemistry of Double-Bonded Functional Groups, Part 1 (Ed.: ), Wiley, New York, 1977, Chap. 4.
- 26 Nitrenes and Nitrenium Ions (Eds.: ), Wiley, Hoboken, 2013, p. 606.
- 27S. Moebs-Sanchez, G. Bouhadir, N. Saffon, L. Maron, D. Bourissou, Chem. Commun. 2008, 3435–3437.
- 28G. A. Olah, J. A. Olah, N. A. Overchuk, J. Org. Chem. 1965, 30, 3373–3376.
- 29G. Boche, P. Andrews, K. Harms, M. Marsch, K. S. Rangappa, M. Schimeczek, C. Willeke, J. Am. Chem. Soc. 1996, 118, 4925–4930.
- 30A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361–363.
- 31Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev. 2009, 109, 3479–3511.
- 32M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354–396.
- 33D. Gudat, Acc. Chem. Res. 2010, 43, 1307–1316.
- 34S. Burck, J. Daniels, T. Gans-Eichler, D. Gudat, K. Nättinen, M. Nieger, Z. Anorg. Allg. Chem. 2005, 631, 1403–1412.
- 35Y. Tulchinsky, M. A. Iron, M. Botoshansky, M. Gandelman, Nat. Chem. 2011, 3, 525–531.
- 36A. Pogoreltsev, Y. Tulchinsky, N. Fridman, M. Gandelman, J. Am. Chem. Soc. 2017, 139, 4062–4067.
- 37J. Zhou, L. L. Liu, L. L. Cao, D. W. Stephan, Chem. Commun. 2018, 54, 4390–4393.
- 38J. Zhou, L. L. Liu, L. L. Cao, D. W. Stephan, Angew. Chem. Int. Ed. 2018, 57, 3322–3326; Angew. Chem. 2018, 130, 3380–3384.
- 39R. Qiu, Y. Chen, S.-F. Yin, X. Xu, C.-T. Au, RSC Adv. 2012, 2, 10774–10793.
- 40G. I. Nikonov, ACS Catal. 2017, 7, 7257–7266.
- 41“Lewis Acids”: M. Hatano, K. Ishihara in Boron Reagents in Synthesis, Vol. 1236, American Chemical Society, Washington, 2016, pp. 27–66.
- 42J. R. Lawson, R. L. Melen, Inorg. Chem. 2017, 56, 8627–8643.
- 43T. A. Hackel, N. McGrath, Molecules 2019, 24, 432.
- 44G. Erker, Dalton Trans. 2005, 1883–1890.
- 45W. E. Piers, T. Chivers, Chem. Soc. Rev. 1997, 26, 345–354.
- 46A. F. Schneider, Y. Chen, M. A. Brook, Dalton Trans. 2019, 48, 13599–13606.
- 47T. Mahdi, D. W. Stephan, J. Am. Chem. Soc. 2014, 136, 15809–15812.
- 48D. S. Bohle, Z. Chua, T. Johnstone, A. G. Moiseev, I. Perepichka, A. Rosadiuk, ChemPlusChem 2012, 77, 387–395.
- 49A. R. Jupp, T. C. Johnstone, D. W. Stephan, Dalton Trans. 2018, 47, 7029–7035.
- 50A. R. Jupp, T. C. Johnstone, D. W. Stephan, Inorg. Chem. 2018, 57, 14764–14771.
- 51L. Süsse, J. H. W. LaFortune, D. W. Stephan, M. Oestreich, Organometallics 2019, 38, 712–721.
- 52W. Yuan, P. Orecchia, M. Oestreich, Chem. Commun. 2017, 53, 10390–10393.
- 53J. M. Blackwell, K. L. Foster, V. H. Beck, W. E. Piers, J. Org. Chem. 1999, 64, 4887–4892.
- 54D. J. Parks, W. E. Piers, J. Am. Chem. Soc. 1996, 118, 9440–9441.
- 55K. Mitsuo, H. Takakazu, S. Hideki, Chem. Lett. 1992, 21, 555–558.
- 56R. J. Andrews, S. S. Chitnis, D. W. Stephan, Chem. Commun. 2019, 55, 5599–5602.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.