Fluorous Corannulenes: Ab initio Predictions and the Synthesis of sym-Pentafluorocorannulene
Xiaoqi Tian
School of Pharm. Sci. and Tech., Tianjin University, 92 Weijin Road, Nankai District, Tianjin-, 300072 China
Search for more papers by this authorDr. Jun Xu
School of Pharm. Sci. and Tech., Tianjin University, 92 Weijin Road, Nankai District, Tianjin-, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Kim K. Baldridge
School of Pharm. Sci. and Tech., Tianjin University, 92 Weijin Road, Nankai District, Tianjin-, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Jay S. Siegel
School of Pharm. Sci. and Tech., Tianjin University, 92 Weijin Road, Nankai District, Tianjin-, 300072 China
Search for more papers by this authorXiaoqi Tian
School of Pharm. Sci. and Tech., Tianjin University, 92 Weijin Road, Nankai District, Tianjin-, 300072 China
Search for more papers by this authorDr. Jun Xu
School of Pharm. Sci. and Tech., Tianjin University, 92 Weijin Road, Nankai District, Tianjin-, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Kim K. Baldridge
School of Pharm. Sci. and Tech., Tianjin University, 92 Weijin Road, Nankai District, Tianjin-, 300072 China
Search for more papers by this authorCorresponding Author
Prof. Jay S. Siegel
School of Pharm. Sci. and Tech., Tianjin University, 92 Weijin Road, Nankai District, Tianjin-, 300072 China
Search for more papers by this authorAbstract
Ten sym-penta and deca-X substituted corannulenes (1–10; X=H, F, CH3, or CF3) define a library of fluorous compounds comprising high symmetry non-planar aromatic compunds. They provide a group of structurally similar, yet physically distinct structures manifesting special chemical behavior related to their degree of fluorination. Owing to their bowl forms, corannulene derivatives are distinct from planar polynuclear aromatic compounds; they have relatively high dipole moments, accept 1–4 electrons, and display room temperature fluorescence as well as low temp phosphorescence. Electronic structure theory predicts the bowl inversion barrier and physical properties. The syntheses of sym-pentafluorocorannulene by an efficient late stage fluorination affords a key derivative to calibrate predictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201913878-sup-0001-misc_information.pdf16.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. M. Lemal, J. Org. Chem. 2004, 69, 1–11;
- 1bK. Uneyama, Organofluorine Chemistry, Wiley-Blackwell, Oxford, 2006;
10.1002/9780470988589 Google Scholar
- 1cG. K. S. Prakash, F. Wang, D. O'Hagan, J. Hu, K. Ding, L.-X. Dai in Organic Chemistry. Breakthroughs and Perspectives (Eds.: ), Wiley-VCH, Weinheim, 2012.
- 2A. Bondi, J. Phys. Chem. 1964, 68, 441–451.
- 3V. P. Reddy, Organofluorine Compounds in Biology and Medicine, Elsevier, Amsterdam, 2015.
- 4
- 4aJ. A. Gladysz, M. Jurisch, Top. Curr. Chem. 2012, 308, 1–24;
- 4bJ. Philis, A. Bolovinos, G. Andritsopoulos, E. Pantos, P. Tsekeris, J. Phys. B 1981, 14, 3621–3635.
- 5
- 5aK. K. Baldridge, J. S. Siegel, Theor. Chem. Acc. 1997, 97, 67–71;
- 5bF. J. Lovas, R. J. McMahon, J. U. Grawbow, M. Schnell, J. Mack, L. T. Scott, R. L. Kuczkowski, J. Am. Chem. Soc. 2005, 127, 4345–4349.
- 6
- 6aM. Baumgarten, L. Gherghei, M. Wagner, A. Weitz, M. Rabinovitz, P.-C. Cheng, L. T. Scott, J. Am. Chem. Soc. 1995, 117, 6254–6257;
- 6bJ. Janata, J. Gendell, C.-Y. Ling, W. Barth, L. Backes, H. B. Mark, Jr., R. G. Lawton, J. Am. Chem. Soc. 1967, 89, 3056–3058;
- 6cT. J. Seiders, K. K. Baldridge, J. S. Siegel, R. Gleiter, Tetrahedron Lett. 2000, 41, 4519–4522.
- 7S. M. Argentine, A. H. Francis, C. C. Chen, C. M. Lieber, J. S. Siegel, J. Phys. Chem. 1994, 98, 7350–7354.
- 8T. J. Seiders, E. L. Elliott, G. H. Grube, J. S. Siegel, J. Am. Chem. Soc. 1999, 121, 7804–7813.
- 9
- 9aI. V. Kuvychko, S. N. Spisak, Y.-S. Chen, A. A. Popov, M. A. Petrukhina, S. H. Strauss, O. V. Boltalina, Angew. Chem. Int. Ed. 2012, 51, 4939–4942; Angew. Chem. 2012, 124, 5023–5026;
- 9bY. Xia, T. Guo, K. K. Baldridge, J. S. Siegel, Eur. J. Org. Chem. 2017, 875–879.
- 10T. J. Seiders, K. K. Baldridge, G. H. Grube, J. S. Siegel, J. Am. Chem. Soc. 2001, 123, 517–625.
- 11A. Haupt, D. Lentz, Chem. Eur. J. 2019, 25, 3440–3454.
- 12L. Echegoyen, L. Echegoyen, Acc. Chem. Res. 1998, 31, 593–601.
- 13S. K. Lee, Y. Zu, A. Herrmann, Y. Geerts, K. Müllen, A. J. Bard, J. Am. Chem. Soc. 1999, 121, 3513–3520.
- 14
- 14aB. A. Khan, A. E. Buba, L. J. Gooßen, Chem. Eur. J. 2012, 18, 1577–1581;
- 14bN. D. Litvinas, P. S. Fier, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 536–539; Angew. Chem. 2012, 124, 551–554;
- 14cP. Novák, A. Lishchynskyi, V. V. Grushin, Angew. Chem. Int. Ed. 2012, 51, 7767–7770; Angew. Chem. 2012, 124, 7887–7890;
- 14dT. D. Senecal, A. T. Parsons, S. L. Buchwald, J. Org. Chem. 2011, 76, 1174–1176.
- 15
- 15aP. S. Fier, J. Luo, J. F. Hartwig, J. Am. Chem. Soc. 2013, 135, 2552–2559;
- 15bT. Furuya, T. Ritter, Org. Lett. 2009, 11, 2860–2863;
- 15cE. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science 2011, 334, 639–642;
- 15dY. Ye, S. D. Schimler, P. S. Hanley, M. S. Sanford, J. Am. Chem. Soc. 2013, 135, 16292–16295.
- 16J.-Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka, Jr., M. R. Smith III, Science 2002, 295, 305–308.
- 17
- 17aM. N. Eliseeva, L. T. Scott, J. Am. Chem. Soc. 2012, 134, 15169–15172;
- 17bS. Da Ros, A. Linden, K. K. Baldridge, J. S. Siegel, Org. Chem. Front. 2015, 2, 626–633.
- 18B. M. Schmidt, B. Topolinkski, M. Yamada, S. Higashibayashi, M. Shionoya, H. Sakurai, D. Lentz, Chem. Eur. J. 2013, 19, 13872–13880.
- 19
- 19aT. Bauert, L. Merz, D. Bandera, M. Parschau, J. S. Siegel, K.-H. Ernst, J. Am. Chem. Soc. 2009, 131, 3460–3461;
- 19bG. Kuperberg, W. Kuperberg, Discrete Comput. Geom. 1990, 5, 389–397;
- 19cQ. Stöckl, D. Bandera, C. S. Kaplan, K.-H. Ernst, J. S. Siegel, J. Am. Chem. Soc. 2014, 136, 606–609.
- 20
- 20aS. Grimme, J. Comput. Chem. 2006, 27, 1787–1799;
- 20bS. Grimme, J. Chem. Phys. 2006, 124, 034108–034115.
- 21F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 22
- 22aK. K. Baldridge, A. Klamt, J. Chem. Phys. 1997, 106, 6622–6633;
- 22bA. Klamt, G. Schürmann, J. Chem. Soc. Perkin Trans. 2 1993, 799.
- 23M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. H. Hutchison, J. Cheminf. 2012, 4, 17.
- 24W. Strumm, J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Wiley-Interscience, New York, 1996.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.