Cobalt-Catalyzed E-Selective Cross-Dimerization of Terminal Alkynes: A Mechanism Involving Cobalt(0/II) Redox Cycles
Yohei Ueda
Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Hayato Tsurugi
Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Kazushi Mashima
Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
Search for more papers by this authorYohei Ueda
Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Hayato Tsurugi
Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Kazushi Mashima
Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
Search for more papers by this authorAbstract
A highly E-selective cross-dimerization of terminal alkynes with either terminal silylacetylenes, tert-butylacetylene, or 1-trimethylsilyloxy-1,1-diphenyl-2-propyne in the presence of a dichlorocobalt(II) complex bearing a sterically demanding 2,9-bis(2,4,6-triisopropylphenyl)-1,10-phenanthroline, activated with two equivalents of EtMgBr, gives a variety of (E)-1,3-enynes. A well-characterized diolefin/cobalt(0) complex, with divinyltetramethyldisiloxane, acted as a catalytically active species without any activation, clearly indicating that a cobalt(0) species is involved in the catalytic cycle.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201913835-sup-0001-misc_information.pdf3.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a Modern Acetylene Chemistry (Eds.: ), VCH, Weinheim, 1995;
- 1bI. H. Goldberg, Acc. Chem. Res. 1991, 24, 191–198;
- 1cK. C. Nicolaou, W.-M. Dai, Angew. Chem. Int. Ed. Engl. 1991, 30, 1387–1416; Angew. Chem. 1991, 103, 1453–1481;
- 1dK. C. Nicolaou, W.-M. Dai, S.-C. Tsay, V. A. Estevez, W. Wrasidlo, Science 1992, 256, 1172–1178;
- 1eS. Saito, Y. Yamamoto, Chem. Rev. 2000, 100, 2901–2916;
- 1fA. Rudi, M. Schleyer, Y. Kashman, J. Nat. Prod. 2000, 63, 1434–1436;
- 1gA. Fontana, G. d'Ippolito, L. D′Souza, E. Mollo, P. S. Parameswaram, G. Cimino, J. Nat. Prod. 2001, 64, 131–133;
- 1hS. E. Schaus, D. Cavalieri, A. G. Myers, Proc. Natl. Acad. Sci. USA 2001, 98, 11075–11080;
- 1iK. Campbell, C. J. Kuehl, M. J. Ferguson, P. J. Stang, R. R. Tykwinski, J. Am. Chem. Soc. 2002, 124, 7266–7267;
- 1jJ.-R. Kong, M.-Y. Ngai, M. J. Krische, J. Am. Chem. Soc. 2006, 128, 718–719;
- 1kH. Kim, H. Lee, D. Lee, S. Kim, D. Kim, J. Am. Chem. Soc. 2007, 129, 2269–2274;
- 1lP. Wessig, G. Müller, Chem. Rev. 2008, 108, 2051–2063;
- 1mW. Zhang, S. Zheng, N. Liu, J. B. Werness, I. A. Guzei, W. Tang, J. Am. Chem. Soc. 2010, 132, 3664–3665.
- 2
- 2aS. Ikeda, Y. Sato, J. Am. Chem. Soc. 1994, 116, 5975–5976;
- 2bE. Negishi, L. Anastasia, Chem. Rev. 2003, 103, 1979–2018;
- 2cC. G. Bates, P. Saejueng, D. Venkataraman, Org. Lett. 2004, 6, 1441–1444;
- 2dB. C. Ranu, L. Adak, K. Chattopadhyay, J. Org. Chem. 2008, 73, 5609–5612;
- 2eS. Ahammed, D. Kundu, B. C. Ranu, J. Org. Chem. 2014, 79, 7391–7398.
- 3H.-J. Deussen, L. Jeppesen, N. Schärer, F. Junager, B. Bentzen, B. Weber, V. Weil, S. J. Mozer, P. Sauerberg, Org. Process Res. Dev. 2004, 8, 363–371.
- 4W. Yan, X. Ye, N. G. Akhmedov, J. L. Petersen, X. Shi, Org. Lett. 2012, 14, 2358–2361.
- 5For selected reviews, see
- 5aB. M. Trost, J. T. Masters, Chem. Soc. Rev. 2016, 45, 2212–2238;
- 5bY. Zhou, Y. Zhang, J. Wang, Org. Biomol. Chem. 2016, 14, 6638–6650.
- 6
- 6aB. M. Trost, C. Chan, G. Ruhter, J. Am. Chem. Soc. 1987, 109, 3486–3487;
- 6bB. M. Trost, Science 1991, 254, 1471–1477.
- 7Co:
- 7aG. Hilt, W. Hess, T. Vogler, C. Hengst, J. Organomet. Chem. 2005, 690, 5170–5181;
- 7bT. Sakurada, Y. Sugiyama, S. Okamoto, J. Org. Chem. 2013, 78, 3583–3591;
- 7cS. Ventre, E. Derat, M. Amatore, C. Aubert, M. Petit, Adv. Synth. Catal. 2013, 355, 2584–2590;
- 7dD. Xu, Q. Sun, Z. Quan, X. Wang, W. Sun, Asian J. Org. Chem. 2018, 7, 155–159;
- 7eX. Zhuang, J.-Y. Chen, Z. Yang, M. Jia, C. Wu, R.-Z. Liao, C.-H. Tung, W. Wang, Organometallics 2019, https://doi.org/10.1021/acs.organomet.9b00486; Fe:
- 7fG. C. Midya, S. Paladhi, K. Dhara, J. Dash, Chem. Commun. 2011, 47, 6698–6700;
- 7gG. C. Midya, B. Parasar, K. Dhara, J. Dash, Org. Biomol. Chem. 2014, 12, 1812–1822;
- 7hO. Rivada-Wheelaghan, S. Chakraborty, L. J. W. Shimon, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2016, 55, 6942–6945; Angew. Chem. 2016, 128, 7056–7059;
- 7iM. Bhunia, S. R. Sahoo, G. Vijaykumar, D. Adhikari, S. K. Mandal, Organometallics 2016, 35, 3775–3780;
- 7jQ. Liang, K. M. Osten, D. Song, Angew. Chem. Int. Ed. 2017, 56, 6317–6320; Angew. Chem. 2017, 129, 6414–6417;
- 7kN. Gorgas, L. G. Alves, B. Stöger, A. M. Martins, L. F. Veiros, K. Kirchner, J. Am. Chem. Soc. 2017, 139, 8130–8133;
- 7lQ. Liang, K. Sheng, A. Salmon, V. Y. Zhou, D. Song, ACS Catal. 2019, 9, 810–818; Ni:
- 7mL. S. Meriwether, E. C. Colthup, G. W. Kennerly, R. N. Reusch, J. Org. Chem. 1961, 26, 5155–5163;
- 7nG. Giacomelli, F. Marcacci, A. M. Caporusso, L. Lardicci, Tetrahedron Lett. 1979, 20, 3217–3220;
10.1016/S0040-4039(01)95366-3 Google Scholar
- 7oM. Ishikawa, J. Ohshita, Y. Ito, A. Minato, J. Chem. Soc. Chem. Commun. 1988, 804–805;
- 7pS. Ogoshi, M. Ueta, M. Oka, H. Kurosawa, Chem. Commun. 2004, 2732–2733.
- 8J.-C. Grenier-Petel, S. K. Collins, ACS Catal. 2019, 9, 3213–3218.
- 9
- 9aL. Kohler, R. G. Hadt, D. Hayes, L. X. Chen, K. L. Mulfort, Dalton Trans. 2017, 46, 13088–13100;
- 9bM.-Y. Hu, Q. He, S.-J. Fan, Z.-C. Wang, L.-Y. Liu, Y.-J. Mu, Q. Peng, S.-F. Zhu, Nat. Commun. 2018, 9, 221–231;
- 9cM.-Y. Hu, J. Lian, W. Sun, T.-Z. Qiao, S.-F. Zhu, J. Am. Chem. Soc. 2019, 141, 4579–4583.
- 10
- 10aC. C. H. Atienza, T. Diao, K. J. Weller, S. A. Nye, K. M. Lewis, J. G. P. Delis, J. L. Boyer, A. K. Roy, P. J. Chirik, J. Am. Chem. Soc. 2014, 136, 12108–12118;
- 10bJ. V. Obligacion, J. M. Neely, A. N. Yazdani, I. Pappas, P. J. Chirik, J. Am. Chem. Soc. 2015, 137, 5855–5858;
- 10cW. N. Palmer, T. Diao, I. Pappas, P. J. Chirik, ACS Catal. 2015, 5, 622–626;
- 10dC. H. Schuster, T. Diao, I. Pappas, P. J. Chirik, ACS Catal. 2016, 6, 2632–2636;
- 10eH. Ben-Daat, C. L. Rock, M. Flores, T. L. Groy, A. C. Bowman, R. J. Trovitch, Chem. Commun. 2017, 53, 7333–7336;
- 10fC. Ghosh, S. Kim, M. R. Mena, J.-H. Kim, R. Pal, C. L. Rock, T. L. Groy, M.-H. Baik, R. J. Trovitch, J. Am. Chem. Soc. 2019, https://doi.org/10.1021/jacs.9b07529.
- 11H.-F. Klein, J. Groß, H. Witty, D. Neugebauer, Z. Naturforsch. B 1984, 39, 643–648.
- 12S. Asghar, S. B. Tailor, D. Elorriaga, R. B. Bedford, Angew. Chem. Int. Ed. 2017, 56, 16367–16370; Angew. Chem. 2017, 129, 16585–16588.
- 13T. Sawano, K. Ou, T. Nishimura, T. Hayashi, Chem. Commun. 2012, 48, 6106–6108.
- 14
- 14aA. J. Kresge, P. Pruszynski, P. J. Stang, B. L. Williamson, J. Org. Chem. 1991, 56, 4808–4811;
- 14bK. Ogata, U. Atsuumi, S. Fukuzawa, Org. Lett. 2011, 13, 122–125;
- 14cR. Azpíroz, L. Rubio-Pérez, R. Castarlenas, J. J. Pérez-Torrente, L. A. Oro, ChemCatChem 2014, 6, 2587–2592.
- 15DFT calculations revealed that an alkynyl acceptor coordinates to A as a C≡C π-coordination, whereas an alkynyl donor coordinates to A as C−H σ-coordination. This coordination difference resulted in the facile oxidative addition of alkynyl donor prior to alkynyl acceptor. See the Supporting Information in details.
- 16See the Supporting Information for the details of the steric congestion around the cobalt(II) center.
- 17
- 17aM. R. Friedfeld, M. Shevlin, J. M. Hoyt, S. W. Krska, M. T. Tudge, P. J. Chirik, Science 2013, 342, 1076–1080;
- 17bM. R. Friedfeld, G. W. Margulieux, B. A. Schaefer, P. J. Chirik, J. Am. Chem. Soc. 2014, 136, 13178–13181;
- 17cD. K. Kim, J. Riedel, R. S. Kim, V. M. Dong, J. Am. Chem. Soc. 2017, 139, 10208–10211;
- 17dM. R. Friedfeld, H. Zhong, R. T. Ruck, M. Shevlin, P. J. Chirik, Science 2018, 360, 888–893;
- 17eY. Hu, Z. Zhang, J. Zhang, Y. Liu, I. D. Gridnev, W. Zhang, Angew. Chem. Int. Ed. 2019, 58, 15767–15771; Angew. Chem. 2019, 131, 15914–15918.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.