Peptide-Catalyzed Fragment Couplings that Form Axially Chiral Non-C2-Symmetric Biaryls
Gavin Coombs
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511 USA
Search for more papers by this authorMarcus H. Sak
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511 USA
Search for more papers by this authorCorresponding Author
Prof. Scott J. Miller
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511 USA
Search for more papers by this authorGavin Coombs
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511 USA
Search for more papers by this authorMarcus H. Sak
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511 USA
Search for more papers by this authorCorresponding Author
Prof. Scott J. Miller
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT, 06511 USA
Search for more papers by this authorAbstract
We have demonstrated that small, modular, tetrameric peptides featuring the Lewis-basic residue β-dimethylaminoalanine (Dmaa) are capable of atroposelectively coupling naphthols and ester-bearing quinones to yield non-C2-symmetric BINOL-type scaffolds with good yields and enantioselectivity. The study culminates in the asymmetric synthesis of backbone-substituted scaffolds similar to 3,3′-disubstituted BINOLs, such as (R)-TRIP, with good (94:6 e.r.) to excellent (>99.9:0.1 e.r.) enantioselectivity after recrystallization, and a diastereoselective net arylation of the minimally modified nonsteroidal anti-inflammatory drug (NSAID) naproxen.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201913563-sup-0001-misc_information.pdf11.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Bringmann, A. J. Price Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384–5427; Angew. Chem. 2005, 117, 5518–5563;
- 1bY.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534–547.
- 2
- 2aJ. Brussee, A. C. A. Jansen, Tetrahedron Lett. 1983, 24, 3261–3262;
- 2bP. Lloyd-Williams, E. Giralt, Chem. Soc. Rev. 2001, 30, 145–157;
- 2cJ. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359–1470;
- 2dT. D. Nelson, R. D. Crouch, Org. React. 2004, 63, 265–555;
- 2eJ. Wencel-Delord, A. Panossian, F. R. Leroux, F. Colobert, Chem. Soc. Rev. 2015, 44, 3418–3430;
- 2fG. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Commun. 2019, 55, 8514–8523.
- 3
- 3aG. Bringmann, M. Breuning, S. Tasler, Synthesis 1999, 525–558;
- 3bG. Bringmann, D. Menche, Acc. Chem. Res. 2001, 34, 615–624;
- 3cG. Bringmann, M. Breuning, R.-M. Pfeifer, W. A. Schenk, K. Kamikawa, M. Uemura, J. Organomet. Chem. 2002, 661, 31–47;
- 3dG. Bringmann, S. Tasler, R.-M. Pfeifer, M. Breuning, J. Organomet. Chem. 2002, 661, 49–65;
- 3eG. Bringmann, H. Scharl, K. Maksimenka, K. Radacki, H. Braunschweig, P. Wich, C. Schmuck, Eur. J. Org. Chem. 2006, 4349–4361.
- 4
- 4aF. Kakiuchi, P. Le Gendre, A. Yamada, H. Ohtaki, S. Murai, Tetrahedron: Asymmetry 2000, 11, 2647–2651;
- 4bR. Miyaji, K. Asano, S. Matsubara, J. Am. Chem. Soc. 2015, 137, 6766–6769;
- 4cC. Yu, H. Huang, X. Li, Y. Zhang, W. Wang, J. Am. Chem. Soc. 2016, 138, 6956–6959.
- 5
- 5aJ. L. Gustafson, D. Lim, S. J. Miller, Science 2010, 328, 1251–1255;
- 5bK. T. Barrett, S. J. Miller, J. Am. Chem. Soc. 2013, 135, 2963–2966;
- 5cM. E. Diener, A. J. Metrano, S. Kusano, S. J. Miller, J. Am. Chem. Soc. 2015, 137, 12369–12377;
- 5dA. J. Metrano, N. C. Abascal, B. Q. Mercado, E. K. Paulson, S. J. Miller, Chem. Commun. 2016, 52, 4816–4819.
- 6B. Zilate, A. Castrogiovanni, C. Sparr, ACS Catal. 2018, 8, 2981–2988.
- 7
- 7aJ. Bao, W. D. Wulff, M. J. Fumo, E. B. Grant, D. P. Heller, M. C. Whitcomb, S.-M. Yeung, J. Am. Chem. Soc. 1996, 118, 2166–2181;
- 7bT. Hattori, M. Date, K. Sakurai, N. Morohashi, H. Kosugi, S. Miyano, Tetrahedron Lett. 2001, 42, 8035–8038;
- 7cA. V. Vorogushin, W. D. Wulff, H.-J. Hansen, J. Am. Chem. Soc. 2002, 124, 6512–6513;
- 7dJ. C. Anderson, J. W. Cran, N. P. King, Tetrahedron Lett. 2003, 44, 7771–7774;
- 7eT. Shibata, T. Fujimoto, K. Yokota, K. Takagi, J. Am. Chem. Soc. 2004, 126, 8382–8383;
- 7fY. Nishii, K. Wakasugi, K. Koga, Y. Tanabe, J. Am. Chem. Soc. 2004, 126, 5358–5359;
- 7gJ. M. Wanjohi, A. Yenesew, J. O. Midiwo, M. Heydenreich, M. G. Peter, M. Dreyer, M. Reichert, G. Bringmann, Tetrahedron 2005, 61, 2667–2674.
- 8Y. Kwon, J. Li, J. P. Reid, J. M. Crawford, R. Jacob, M. S. Sigman, F. D. Toste, S. J. Miller, J. Am. Chem. Soc. 2019, 141, 6698–6705.
- 9Y.-H. Chen, D.-J. Cheng, J. Zhang, Y. Wang, X.-Y. Liu, B. Tan, J. Am. Chem. Soc. 2015, 137, 15062–15065.
- 10M. Moliterno, R. Cari, A. Puglisi, A. Antenucci, C. Sperandio, E. Moretti, A. Di Sabato, R. Salvio, M. Bella, Angew. Chem. Int. Ed. 2016, 55, 6525–6529; Angew. Chem. 2016, 128, 6635–6639.
- 11
- 11aE. A. C. Davie, S. M. Mennen, Y. Xu, S. J. Miller, Chem. Rev. 2007, 107, 5759–5812;
- 11bH. Wennemers, Chem. Commun. 2011, 47, 12036–12041;
- 11cR. C. Wende, P. R. Schreiner, Green Chem. 2012, 14, 1821–1849;
- 11dK. Akagawa, K. Kudo, Acc. Chem. Res. 2017, 50, 2429–2439;
- 11eA. J. Metrano, S. J. Miller, Acc. Chem. Res. 2019, 52, 199–215.
- 12Peptide catalysis establishing axial chirality: C. T. Mbofana, S. J. Miller, J. Am. Chem. Soc. 2014, 136, 3285–3292.
- 13
- 13aP. Kočovský, Š. Vyskočil, M. Smrčina, Chem. Rev. 2003, 103, 3213–3246;
- 13bM. Shibasaki, S. Matsunaga, Chem. Soc. Rev. 2006, 35, 269–279.
- 14N. Momiyama, H. Tabuse, H. Noda, M. Yamanaka, T. Fujinami, K. Yamanishi, A. Izumiseki, K. Funayama, F. Egawa, S. Okada, H. Adachi, M. Terada, J. Am. Chem. Soc. 2016, 138, 11353–11359.
- 15J. R. Zbieg, E. Yamaguchi, E. L. McInturff, M. J. Krische, Science 2012, 336, 324–327.
- 16
- 16aH. Gao, Q.-L. Xu, C. Keene, M. Yousufuddin, D. H. Ess, L. Kürti, Angew. Chem. Int. Ed. 2016, 55, 566–571; Angew. Chem. 2016, 128, 576–581;
- 16bT. Kamitanaka, K. Morimoto, K. Tsuboshima, D. Koseki, H. Takamuro, T. Dohi, Y. Kita, Angew. Chem. Int. Ed. 2016, 55, 15535–15538; Angew. Chem. 2016, 128, 15764–15767.
- 17
- 17aM. W. MacArthur, J. M. Thornton, J. Mol. Biol. 1991, 218, 397–412;
- 17bT. S. Haque, J. C. Little, S. H. Gellman, J. Am. Chem. Soc. 1994, 116, 4105–4106;
- 17cT. S. Haque, J. C. Little, S. H. Gellman, J. Am. Chem. Soc. 1996, 118, 6975–6985;
- 17dH. E. Stanger, S. H. Gellman, J. Am. Chem. Soc. 1998, 120, 4236–4237;
- 17eS. Rao Raghothama, S. Kumar Awasthi, P. Balaram, J. Chem. Soc. Perkin Trans. 2 1998, 137–144.
- 18Important examples with scaffolds substituted at the 3- and 3′-positions have also been reported by Bella and co-workers in Ref. [10].
- 19CCDC 1906659 (3 s), and 1900403 (3 t) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.