Enantioselective Difunctionalization of Alkenes by a Palladium-Catalyzed Heck/Sonogashira Sequence
Lujia Zhou
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
These authors contributed equally to this work.
Search for more papers by this authorSanliang Li
Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Bing Xu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorDanting Ji
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorLizuo Wu
College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012 China
Search for more papers by this authorProf. Dr. Yu Liu
College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Zhan-Ming Zhang
Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Junliang Zhang
Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438 P. R. China
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorLujia Zhou
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
These authors contributed equally to this work.
Search for more papers by this authorSanliang Li
Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Bing Xu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorDanting Ji
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorLizuo Wu
College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012 China
Search for more papers by this authorProf. Dr. Yu Liu
College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012 China
Search for more papers by this authorCorresponding Author
Zhan-Ming Zhang
Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Junliang Zhang
Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438 P. R. China
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorAbstract
Sonogashira-type cross-couplings are one of the most significant alkynylations in organic chemistry. One of the first palladium-catalyzed intramolecular Heck/Sonogashira reactions of alkenes with terminal alkynes is now reported. With this method, a variety of uniquely substituted chiral benzene-fused heterocycles bearing a propargyl-substituted all-carbon quaternary stereocenter were obtained in a straightforward, high-yielding, and highly stereoselective manner under mild conditions. Salient features of this process include the use of readily available substrates, high selectivities, a broad substrate scope as well as versatile product functionalizations.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201913367-sup-0001-misc_information.pdf19.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations (Ed.: ), Wiley-VCH, Weinheim, 2014;
- 1b Metal-Catalyzed Cross-Coupling Reactions and More (Ed.: ), Wiley-VCH, Weinheim, 2014; for selected reviews and references, see:
- 1cH. Ehrhorn, M. Tamm, Chem. Eur. J. 2019, 25, 3190;
- 1dU. H. F. Bunz, Chem. Rev. 2000, 100, 1605;
- 1eU. H. F. Bunz, K. Seehafer, M. Bender, M. Porz, Chem. Soc. Rev. 2015, 44, 4322.
- 2For selected representative examples, see:
- 2aX. Ren, G. Li, S. Wei, H. Du, Org. Lett. 2015, 17, 990;
- 2bS. Hötling, C. Bittner, M. Tamm, S. Dähn, J. Collatz, J. L. M. Schulz, S. Steidle, Org. Lett. 2015, 17, 5004;
- 2cA. Ahlers, T. de Haro, B. Gabor, A. Füstner, Angew. Chem. Int. Ed. 2016, 55, 1406; Angew. Chem. 2016, 128, 1428;
- 2dP. M. Cromm, S. Schaubach, J. Spiegel, A. Fürstner, T. N. Grossmann, H. Waldmann, Nat. Commun. 2016, 7, 11300.
- 3K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467.
- 4For recent and representative examples, see:
- 4aE. Fernández, M. Rivero-Crespo, A. I. Domínguez, P. Rubio-Marqués, J. Oliver-Meseguer, L. Liu, M. Cabrero-Antonino, R. Gavara, J. C. Hernández-Garrido, M. Boronat, A. Leyva-Pérez, A. Corma, J. Am. Chem. Soc. 2019, 141, 1928;
- 4bT. Wang, J. Huang, H. Lv, Q. Fan, L. Feng, Z. Tao, H. Ju, X. Wu, S. L. Tait, J. Zhu, J. Am. Chem. Soc. 2018, 140, 13421;
- 4cW. Liu, L. Li, C.-J. Li, Nat. Commun. 2015, 6, 6526.
- 5
- 5aM. Eckhardt, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 13642;
- 5bG. Altenhoff, S. Würtz, F. Glorius, Tetrahedron Lett. 2006, 47, 2925.
- 6O. Vechorkin, D. Barmaz, V. Proust, X. Hu, J. Am. Chem. Soc. 2009, 131, 12078.
- 7
- 7aF. M. Watts, Jr., T. Pouland, R. A. Bunce, K. D. Berlin, D. M. Benbrook, M. Mashayekhi, D. Bhandari, D. Zhou, Eur. J. Med. Chem. 2018, 158, 720;
- 7bJ. R. Proudfoot, J. R. Regan, D. S. Thomson, D. Kuzmich, T. W.-H. Lee, A. Hammach, M. S. Ralph, R. Zindell, Y. Bekkali, WO 2004063163, 2004;
- 7cJ. J. Winter-Holt, E. G. Mciver, M. Ambler, S. Lewis, J. Osborne, K. Webb-Smith, WO 2017085484, 2017;
- 7dT. Kawasaki, A. Ogawa, R. Terashima, T. Saheki, N. Ban, H. Sekiguchi, K. Sakaguchi, M. Sakamoto, J. Org. Chem. 2005, 70, 2957;
- 7eB. M. Trost, W.-J. Bai, C. Hohn, Y. Bai, J. J. Cregg, J. Am. Chem. Soc. 2018, 140, 6710;
- 7fS. Yonekubo, N. Fushimi, T. Miyagi, O. Nakanishi, K. Katsuno, M. Ozawa, C. Handa, N. Furuya, H. Muranaka, Bioorg. Med. Chem. 2016, 24, 5895;
- 7gM. Varasi, R. Amici, F. Thaler, C. Mercurio, P. Vianello, M. Pasi, WO 2017109061, 2017.
- 8
- 8aK. C. Nicolaou, X. Huang, N. Giuseppone, P. B. Rao, M. Bella, M. V. Reddy, S. A. Snyder, Angew. Chem. Int. Ed. 2001, 40, 4705;
10.1002/1521-3773(20011217)40:24<4705::AID-ANIE4705>3.0.CO;2-D CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4841;
- 8bP. Diaz, S. S. Phatak, J. Xu, F. R. Fronczek, F. Astruc-Diaz, C. M. Thompson, C. N. Cavasotto, M. Naguib, ChemMedChem 2009, 4, 1615;
- 8cZ. Luo, M. Naguib, Tetrahedron Lett. 2012, 53, 3316;
- 8dM. J. Costanzo, S. C. Yabut, H.-C. Zhang, K. B. White, L. de Garavilla, Y. Wang, L. K. Minor, B. A. Tounge, A. N. Barnakov, F. Lewandowski, C. Milligan, J. C. Spurlino, W. M. Abraham, V. Boswell-Smith, C. P. Page, B. E. Maryanoff, Bioorg. Med. Chem. Lett. 2008, 18, 2114;
- 8eJ. E. M. Booker, A. Boto, G. H. Churchill, C. P. Green, M. Ling, G. Meek, J. Prabhakaran, D. Sinclair, A. J. Blake, G. Pattenden, Org. Biomol. Chem. 2006, 4, 4193;
- 8fK. C. Nicolaou, S. A. Snyder, N. Giuseppone, X. Huang, M. Bella, M. V. Reddy, P. B. Rao, A. E. Koumbis, P. Giannakakou, A. O'Brate, J. Am. Chem. Soc. 2004, 126, 10174;
- 8gW. G. Ma, Y. Fukushi, S. Tahara, Fitoterapia 1999, 70, 258;
- 8hH. J. Zhang, A. Padwa, Tetrahedron Lett. 2006, 47, 3905;
- 8iM. Kamigauchi, Y. Noda, J. Nishijo, K. Iwasaki, K. Tobetto, Y. In, K. Tomooc, T. Ishida, Bioorg. Med. Chem. 2005, 13, 1867;
- 8jW. L. Yu, T. Nunns, J. Richardson, K. I. Booker-Milburn, Org. Lett. 2018, 20, 1272;
- 8kW. G. Oppolzer, A. C. Spivey, C. G. Bochet, J. Am. Chem. Soc. 1994, 116, 3139;
- 8lM. Cushman, A. Abbaspour, Y. P. Gupta, J. Am. Chem. Soc. 1983, 105, 2873;
- 8mA. Padwa, H. J. Zhang, J. Org. Chem. 2007, 72, 2570;
- 8nJ. McNulty, C. Z. Velazquez, Angew. Chem. Int. Ed. 2014, 53, 8450; Angew. Chem. 2014, 126, 8590;
- 8oT. W. Bingham, L. W. Hernandez, D. G. Olson, R. L. Svec, P. J. Hergenrother, D. Sarlah, J. Am. Chem. Soc. 2019, 141, 657.
- 9For recent reviews on the dicarbofunctionalization of unactivated alkenes, see:
- 9aR. Giri, S. KC, J. Org. Chem. 2018, 83, 3013;
- 9bR. K. Dhungana, S. KC, P. Basnet, R. Giri, Chem. Rec. 2018, 18, 1314; for recent reviews on the dicarbofunctionalization of activated alkenes, see:
- 9cH.-C. Guo, J.-A. Ma, Angew. Chem. Int. Ed. 2006, 45, 354; Angew. Chem. 2006, 118, 362;
- 9dY. Ping, Y. Li, J. Zhu, W. Kong, Angew. Chem. Int. Ed. 2019, 58, 1562; Angew. Chem. 2019, 131, 1576.
- 10For selected examples of metal-catalyzed dicarbofunctionalizations of unactivated alkenes, see:
- 10aK. Wakabayashi, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2001, 123, 5374;
- 10bV. B. Phapale, E. Buñuel, M. García-Iglesias, D. J. Cárdenas, Angew. Chem. Int. Ed. 2007, 46, 8790; Angew. Chem. 2007, 119, 8946;
- 10cA. M. Dreis, C. J. Douglas, J. Am. Chem. Soc. 2009, 131, 412;
- 10dL. Liao, R. Jana, K. B. Urkalan, M. S. Sigman, J. Am. Chem. Soc. 2011, 133, 5784;
- 10eH. Egami, R. Shimizu, S. Kawamura, M. Sodeoka, Angew. Chem. Int. Ed. 2013, 52, 4000; Angew. Chem. 2013, 125, 4092;
- 10fW. You, M. K. Brown, J. Am. Chem. Soc. 2014, 136, 14730;
- 10gH. Yoon, D. A. Petrone, M. Lautens, Org. Lett. 2014, 16, 6420;
- 10hZ. Liu, T. Zeng, K. S. Yang, K. M. Engle, J. Am. Chem. Soc. 2016, 138, 15122;
- 10iS. Thapa, P. Basnet, R. Giri, J. Am. Chem. Soc. 2017, 139, 5700;
- 10jA. García-Domínguez, Z. Li, C. Nevado, J. Am. Chem. Soc. 2017, 139, 6835;
- 10kJ. A. Walker, K. L. Vickerman, J. N. Humke, L. M. Stanley, J. Am. Chem. Soc. 2017, 139, 10228;
- 10lR. C. Carmona, O. D. Köster, C. R. D. Correia, Angew. Chem. Int. Ed. 2018, 57, 12067; Angew. Chem. 2018, 130, 12243.
- 11For selected examples of metal-catalyzed dicarbofunctionalization of activated alkenes, see:
- 11aW. Kong, Q. Wang, J. Zhu, J. Am. Chem. Soc. 2015, 137, 16028;
- 11bY. J. Jang, H. Yoon, M. Lautens, Org. Lett. 2015, 17, 3895;
- 11cS. Tong, A. Limouni, Q. Wang, M.-X. Wang, J. Zhu, Angew. Chem. Int. Ed. 2017, 56, 14192; Angew. Chem. 2017, 129, 14380;
- 11dJ. Ye, Z. Shi, T. Sperger, Y. Yasukawa, C. Kingston, F. Schoenebeck, M. Lautens, Nat. Chem. 2017, 9, 361;
- 11eL. Wu, F. Wang, X. Wan, D. Wang, P. Chen, G. Liu, J. Am. Chem. Soc. 2017, 139, 2904;
- 11fP. Gao, L.-A. Chen, M. K. Brown, J. Am. Chem. Soc. 2018, 140, 10653;
- 11gS. KC, R. K. Dhungana, B. Shrestha, S. Thapa, N. Khanal, P. Basnet, R. W. Lebrun, R. Giri, J. Am. Chem. Soc. 2018, 140, 9801.
- 12
- 12aH. Cong, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 3788;
- 12bW. You, M. K. Brown, J. Am. Chem. Soc. 2015, 137, 14578;
- 12cZ.-M. Zhang, B. Xu, L. Wu, Y. Wu, Y. Qian, L. Zhou, Y. Liu, J. Zhang, Angew. Chem. Int. Ed. 2019, 58, 14653; Angew. Chem. 2019, 131, 14795.
- 13
- 13aK. Wang, Z. Ding, Z. Zhou, W. Kong, J. Am. Chem. Soc. 2018, 140, 12364;
- 13bY. Jin, C. Wang, Angew. Chem. Int. Ed. 2019, 58, 6722; Angew. Chem. 2019, 131, 6794;
- 13cZ.-X. Tian, J.-B. Qiao, G.-L. Xu, X. Pang, L. Qi, W.-Y. Ma, Z.-Z. Zhao, J. Duan, Y.-F. Du, P. Su, X.-Y. Liu, X.-Z. Shu, J. Am. Chem. Soc. 2019, 141, 7637.
- 14
- 14aM.-B. Zhou, X.-C. Huang, Y.-Y. Liu, R.-J. Song, J.-H. Li, Chem. Eur. J. 2014, 20, 1843;
- 14bD.-C. Wang, H.-X. Wang, E.-J. Hao, X.-H. Jiang, M.-S. Xie, G.-R. Qu, H.-M. Guo, Adv. Synth. Catal. 2016, 358, 494;
- 14cX.-X. Wu, A. Liu, S. Xu, J. He, W. Sun, S. Chen, Org. Lett. 2018, 20, 1538;
- 14dM. Hu, Y. Gao, W. Wu, J. Li, C. Li, H. Zhang, H. Jiang, Org. Biomol. Chem. 2018, 16, 7383;
- 14eK. Ramesh, G. Satyanarayana, Green Chem. 2018, 20, 369;
- 14fK. Ramesh, S. Basuli, G. Satyanarayana, Eur. J. Org. Chem. 2018, 2171.
- 15
- 15aR.-R. Liu, Y.-G. Wang, Y.-L. Li, B.-B. Huang, R.-X. Liang, Y.-X. Jia, Angew. Chem. Int. Ed. 2017, 56, 7475; Angew. Chem. 2017, 129, 7583;
- 15bF.-N. Sun, W.-C. Yang, X.-B. Chen, Y.-L. Sun, J. Cao, Z. Xua, L.-W. Xu, Chem. Sci. 2019, 10, 7579.
- 16After submission of this paper, a similar reaction was reported; see: X. Bai, C. Wu, S. Ge, Y. Lu, Angew. Chem. Int. Ed. 2019, https://doi.org/10.1002/anie.201913148; Angew. Chem. 2019, https://doi.org/10.1002/ange.201913148.
- 17
- 17aC. Shen, R.-R. Liu, R.-J. Fan, Y.-L. Li, T.-F. Xu, J.-R. Gao, Y.-X. Jia, J. Am. Chem. Soc. 2015, 137, 4936;
- 17bG. Yue, K. Lei, H. Hirao, J. Zhou, Angew. Chem. Int. Ed. 2015, 54, 6531; Angew. Chem. 2015, 127, 6631;
- 17cW. Kong, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2017, 56, 3987; Angew. Chem. 2017, 129, 4045;
- 17dY. J. Jang, E. M. Larin, M. Lautens, Angew. Chem. Int. Ed. 2017, 56, 11927; Angew. Chem. 2017, 129, 12089;
- 17eZ.-M. Zhang, B. Xu, Y. Qian, L. Wu, Y. Wu, L. Zhou, Y. Liu, J. Zhang, Angew. Chem. Int. Ed. 2018, 57, 10373; Angew. Chem. 2018, 130, 10530.
- 18
- 18aZ.-M. Zhang, B. Xu, L. Wu, L. Zhou, D. Ji, Y. Liu, Z. Li, J. Zhang, J. Am. Chem. Soc. 2019, 141, 8110;
- 18bH. Yoon, A. D. Marchese, M. Lautens, J. Am. Chem. Soc. 2018, 140, 10950;
- 18cH. Liu, C. Li, D. Qiu, X. Tong, J. Am. Chem. Soc. 2011, 133, 6187;
- 18dS. G. Newman, J. K. Howell, N. Nicolaus, M. Lautens, J. Am. Chem. Soc. 2011, 133, 14916.
- 19Y. Ping, K. Wang, Q. Pan, Z. Ding, Z. Zhou, Y. Guo, W. Kong, ACS Catal. 2019, 9, 7335.
- 20For Ming-Phos ligands, see:
- 20aZ.-M. Zhang, P. Chen, W. Li, Y. Niu, X. Zhao, J. Zhang, Angew. Chem. Int. Ed. 2014, 53, 4350; Angew. Chem. 2014, 126, 4439;
- 20bM. Chen, Z.-M. Zhang, Z. Yu, H. Qiu, B. Ma, H.-H. Wu, J. Zhang, ACS Catal. 2015, 5, 7488;
- 20cZ.-M. Zhang, B. Xu, S. Xu, H.-H. Wu, J. Zhang, Angew. Chem. Int. Ed. 2016, 55, 6324; Angew. Chem. 2016, 128, 6432;
- 20dB. Xu, Z.-M. Zhang, S. Xu, B. Liu, Y. Xiao, J. Zhang, ACS Catal. 2017, 7, 210; for Xiang-Phos ligands, see:
- 20eH. Hu, Y. Wang, D. Qian, Z.-M. Zhang, L. Liu, J. Zhang, Org. Chem. Front. 2016, 3, 759; For PC-Phos ligands, see:
- 20fY. Wang, P. Zhang, X. Di, Q. Dai, Z.-M. Zhang, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 15905; Angew. Chem. 2017, 129, 16121;
- 20gL. Wang, M. Chen, P. Zhang, W. Li, J. Zhang, J. Am. Chem. Soc. 2018, 140, 3467.
- 21CCDC 1959962 (3 h) and 1959963 (8 j) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.