The Redox Coupling Effect in a Photocatalytic RuII-PdII Cage with TTF Guest as Electron Relay Mediator for Visible-Light Hydrogen-Evolving Promotion
Dr. Kai Wu
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Kang Li
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Sha Chen
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorDr. Ya-Jun Hou
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorYu-Lin Lu
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorJing-Si Wang
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorMei-Juan Wei
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorProf. Dr. Mei Pan
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Cheng-Yong Su
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
Search for more papers by this authorDr. Kai Wu
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Kang Li
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Sha Chen
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorDr. Ya-Jun Hou
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorYu-Lin Lu
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorJing-Si Wang
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorMei-Juan Wei
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorProf. Dr. Mei Pan
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Cheng-Yong Su
MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
Search for more papers by this authorDedicated to Professor Jean-Marie Lehn on the occasion of his 80th birthday
Abstract
A nanocage coupling effect from a redox RuII-PdII metal–organic cage (MOC-16) is demonstrated for efficient photochemical H2 production by virtue of redox–guest modulation of the photo-induced electron transfer (PET) process. Through coupling with photoredox cycle of MOC-16, tetrathiafulvalene (TTF) guests act as electron relay mediator to improve the overall electron transfer efficiency in the host–guest system in a long-time scale, leading to significant promotion of visible-light driven H2 evolution. By contrast, the presence of larger TTF-derivatives in bulk solution without host–guest interactions results in interference with PET process of MOC-16, leading to inefficient H2 evolution. Such interaction provides an example to understand the interplay between the redox-active nanocage and guest for optimization of redox events and photocatalytic activities in a confined chemical nanoenvironment.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201913303-sup-0001-misc_information.pdf864.8 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Jiou, K. Chiravuri, A. Gudapati, J. J. Gassensmith, Curr. Org. Chem. 2014, 18, 2002–2009.
- 2N. Vallavoju, J. Sivaguru, Chem. Soc. Rev. 2014, 43, 4084–4101.
- 3T. S. Koblenz, J. Wassenaar, J. N. Reek, Chem. Soc. Rev. 2008, 37, 247–262.
- 4S. Durot, J. Taesch, V. Heitz, Chem. Rev. 2014, 114, 8542–8578.
- 5N. Ahmad, H. A. Younus, A. H. Chughtai, F. Verpoort, Chem. Soc. Rev. 2015, 44, 9–25.
- 6L. J. Chen, H. B. Yang, M. Shionoya, Chem. Soc. Rev. 2017, 46, 2555–2576.
- 7Z. J. Wang, K. N. Clary, R. G. Bergman, K. N. Raymond, F. D. Toste, Nat. Chem. 2013, 5, 100–103.
- 8L. L. K. Taylor, I. A. Riddell, M. M. J. Smulders, Angew. Chem. Int. Ed. 2019, 58, 1280–1307; Angew. Chem. 2019, 131, 1292–1320.
- 9M. Schulze, V. Kunz, P. D. Frischmann, F. Würthner, Nat. Chem. 2016, 8, 576–583.
- 10H. Amouri, C. Desmarets, J. Moussa, Chem. Rev. 2012, 112, 2015–2041.
- 11M. Pan, K. Wu, J.-H. Zhang, C.-Y. Su, Coord. Chem. Rev. 2019, 378, 333–349.
- 12L. Zhao, X. Jing, X. Li, X. Guo, L. Zeng, C. He, C. Duan, Coord. Chem. Rev. 2019, 378, 151–187.
- 13B. Breiner, J. K. Clegg, J. R. Nitschke, Chem. Sci. 2011, 2, 51–56.
- 14N. Hafezi, J. M. Holcroft, K. J. Hartlieb, E. J. Dale, N. A. Vermeulen, C. L. Stern, A. A. Sarjeant, J. F. Stoddart, Angew. Chem. Int. Ed. 2015, 54, 456–461; Angew. Chem. 2015, 127, 466–471.
- 15M. Zhang, M. L. Saha, M. Wang, Z. Zhou, B. Song, C. Lu, X. Yan, X. Li, F. Huang, S. Yin, P. J. Stang, J. Am. Chem. Soc. 2017, 139, 5067–5074.
- 16S. Shanmugaraju, P. S. Mukherjee, Chem. Eur. J. 2015, 21, 6656–6666.
- 17G. H. Clever, P. Punt, Acc. Chem. Res. 2017, 50, 2233–2243.
- 18G. H. Clever, S. Tashiro, M. Shionoya, J. Am. Chem. Soc. 2010, 132, 9973–9975.
- 19S. Zarra, D. M. Wood, D. A. Roberts, J. R. Nitschke, Chem. Soc. Rev. 2015, 44, 419–432.
- 20C. J. Bruns, D. Fujita, M. Hoshino, S. Sato, J. F. Stoddart, M. Fujita, J. Am. Chem. Soc. 2014, 136, 12027–12034.
- 21A. M. Castilla, T. K. Ronson, J. R. Nitschke, J. Am. Chem. Soc. 2016, 138, 2342–2351.
- 22K. Wu, K. Li, Y.-J. Hou, M. Pan, L.-Y. Zhang, L. Chen, C.-Y. Su, Nat. Commun. 2016, 7, 10487.
- 23J. Ma, Y. Ying, Q. Yang, Y. Ban, H. Huang, X. Guo, Y. Xiao, D. Liu, Y. Li, W. Yang, C. Zhong, Chem. Commun. 2015, 51, 4249–4251.
- 24T. Liu, Y. Liu, W. Xuan, Y. Cui, Angew. Chem. Int. Ed. 2010, 49, 4121–4124; Angew. Chem. 2010, 122, 4215–4218.
- 25A. Schmidt, V. Molano, M. Hollering, A. Pothig, A. Casini, F. E. Kuhn, Chem. Eur. J. 2016, 22, 2253–2256.
- 26Y. R. Zheng, K. Suntharalingam, T. C. Johnstone, S. J. Lippard, Chem. Sci. 2015, 6, 1189–1193.
- 27J. E. M. Lewis, E. L. Gavey, S. A. Cameron, J. D. Crowley, Chem. Sci. 2012, 3, 778–784.
- 28H. Vardhan, M. Yusubov, F. Verpoort, Coord. Chem. Rev. 2016, 306, 171–194.
- 29C. Tan, D. Chu, X. Tang, Y. Liu, W. Xuan, Y. Cui, Chem. Eur. J. 2019, 25, 662–672.
- 30D. M. Kaphan, M. D. Levin, R. G. Bergman, K. N. Raymond, F. D. Toste, Science 2015, 350, 1235–1238.
- 31D. Rota Martir, E. Zysman-Colman, Chem. Commun. 2019, 55, 139–158.
- 32K. Yazaki, S. Noda, Y. Tanaka, Y. Sei, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 2016, 55, 15031–15034; Angew. Chem. 2016, 128, 15255–15258.
- 33V. Croué, S. Goeb, M. Salle, Chem. Commun. 2015, 51, 7275–7289.
- 34W.-X. Gao, H.-N. Zhang, G.-X. Jin, Coord. Chem. Rev. 2019, 386, 69–84.
- 35L. Yang, X. Jing, C. He, Z. Chang, C. Duan, Chem. Eur. J. 2016, 22, 18107–18114.
- 36L. Zhao, J. Wei, J. Zhang, C. He, C. Duan, Angew. Chem. Int. Ed. 2017, 56, 15284–15288; Angew. Chem. 2017, 129, 15486–15490.
- 37S. Chen, K. Li, F. Zhao, L. Zhang, M. Pan, Y.-Z. Fan, J. Guo, J. Shi, C.-Y. Su, Nat. Commun. 2016, 7, 13169.
- 38J. Guo, Y.-W. Xu, K. Li, L.-M. Xiao, S. Chen, K. Wu, X.-D. Chen, Y.-Z. Fan, J.-M. Liu, C.-Y. Su, Angew. Chem. Int. Ed. 2017, 56, 3852–3856; Angew. Chem. 2017, 129, 3910–3914.
- 39X. Jing, Y. Yang, C. He, Z. Chang, J. N. H. Reek, C. Duan, Angew. Chem. Int. Ed. 2017, 56, 11759–11763; Angew. Chem. 2017, 129, 11921–11925.
- 40X. Jing, C. He, L. Zhao, C. Duan, Acc. Chem. Res. 2019, 52, 100–109.
- 41X. Jing, C. He, Y. Yang, C. Duan, J. Am. Chem. Soc. 2015, 137, 3967–3974.
- 42K. Li, L.-Y. Zhang, C. Yan, S.-C. Wei, M. Pan, L. Zhang, C.-Y. Su, J. Am. Chem. Soc. 2014, 136, 4456–4459.
- 43F. Wudl, G. M. Smith, E. J. Hufnagel, J. Chem. Soc. Dalton Trans. 1970, 1453–1454.
- 44M. Bendikov, F. Wudl, D. F. Perepichka, Chem. Rev. 2004, 104, 4891–4946.
- 45M. Yoshizawa, K. Kumazawa, M. Fujita, J. Am. Chem. Soc. 2005, 127, 13456–13457.
- 46J. Sun, Y. Wu, Y. Wang, Z. Liu, C. Cheng, K. J. Hartlieb, M. R. Wasielewski, J. F. Stoddart, J. Am. Chem. Soc. 2015, 137, 13484–13487.
- 47A. Y. Ziganshina, Y. H. Ko, W. S. Jeon, K. Kim, Chem. Commun. 2004, 806–807.
- 48T. Chen, P. Huo, J.-L. Hou, J. Xu, Q.-Y. Zhu, J. Dai, Inorg. Chem. 2016, 55, 12758–12765.
- 49J. S. Park, J. L. Sessler, Acc. Chem. Res. 2018, 51, 2400–2410.
- 50F. Vögtle, M. Plevoets, M. Nieger, G. C. Azzellini, A. Credi, L. De Cola, V. De Marchis, M. Venturi, V. Balzani, J. Am. Chem. Soc. 1999, 121, 6290–6298.
- 51H. Ozawaa, K. Sakai, Chem. Commun. 2011, 47, 2227–2242.
- 52K. Wu, Y.-J. Hou, Y.-L. Lu, Y.-Z. Fan, Y.-N. Fan, H.-J. Yu, K. Li, M. Pan, C.-Y. Su, Chem. Eur. J. 2019, 25, 11903–11909.
- 53N. E. Tokel-Takvoryan, R. E. Hemingway, A. J. Bard, J. Am. Chem. Soc. 1973, 95, 6582–6589.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.