Direct Addition of Amides to Glycals Enabled by Solvation-Insusceptible 2-Haloazolium Salt Catalysis
Yuya Nakatsuji
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorDr. Yusuke Kobayashi
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yoshiji Takemoto
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorYuya Nakatsuji
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorDr. Yusuke Kobayashi
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Yoshiji Takemoto
Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorAbstract
The direct 2-deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2-deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2-deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2-deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2-deoxyglycosylation reaction difficult. Diffusion-ordered two-dimensional NMR spectroscopy analysis implied that the 2-chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π-scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201907129-sup-0001-misc_information.pdf6.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Henninot, J. C. Collins, J. M. Nuss, J. Med. Chem. 2018, 61, 1382–1414.
- 2P. Sears, C. H. Wong, Science 2001, 291, 2344–2350.
- 3C. R. Bertozzi, L. L. Kiessling, Science 2001, 291, 2357–2364.
- 4M. Murakami, T. Kiuchi, M. Nishihara, K. Tezuka, R. Okamoto, M. Izumi, Y. Kajihara, Sci. Adv. 2016, 2, e 1500678.
- 5C. Li, L.-X. Wang, Chem. Rev. 2018, 118, 8359–8413.
- 6T. Noronkoski, I. B. Stoineva, I. P. Ivanov, D. D. Petkov, I. Mononen, J. Biol. Chem. 1998, 273, 26295–26297.
- 7P. Kuhn, C. Guan, T. Cui, A. L. Tarentino, T. H. Plummer Jr., P. V. Roey, J. Biol. Chem. 1995, 270, 29493–29497.
- 8J. Q. Fan, Y. C. Lee, J. Biol. Chem. 1997, 272, 27058–27064.
- 9L. Laupichle, C. E. Sowa, J. Thiem, Bioorg. Med. Chem. 1994, 2, 1281–1294.
- 10G. K. Rawal, A. Kumar, U. Tawar, Y. D. Vankar, Org. Lett. 2007, 9, 5171–5174.
- 11T. J. Meyerhoefer, S. Kershaw, N. Caliendo, S. Eltayeb, E. Hanawa-Romero, P. Bykovskaya, V. Huang, C. H. Marzabadi, M. De Castro, Eur. J. Org. Chem. 2015, 2457–2462.
- 12For a recent review, see:
- 12aC. S. Bennett, M. C. Galan, Chem. Rev. 2018, 118, 7931–7985; For selected recent examples,
- 12bM. Kaneko, S. B. Herzon, Org. Lett. 2014, 16, 2776–2779;
- 12cJ. P. Issa, C. S. Bennett, J. Am. Chem. Soc. 2014, 136, 5740–5744;
- 12dT. M. Beale, P. J. Moon, M. S. Taylor, Org. Lett. 2014, 16, 3604–3607;
- 12eT. Kimura, D. Takahashi, K. Toshima, J. Org. Chem. 2015, 80, 9552–9562;
- 12fY. Park, K. C. Harper, N. Kuhl, E. E. Kwan, R. Y. Liu, E. N. Jacobsen, Science 2017, 355, 162–166.
- 13For examples of transition-metal catalysis, see:
- 13aB. D. Sherry, R. N. Loy, F. D. Toste, J. Am. Chem. Soc. 2004, 126, 4510–4511;
- 13bC. Palo-Nieto, A. Sau, M. C. Galan, J. Am. Chem. Soc. 2017, 139, 14041–14044.
- 14For examples of organocatalysis, see:
- 14aV. Bolitt, C. Mioskowski, S. G. Lee, J. R. Falck, J. Org. Chem. 1990, 55, 5812–5813;
- 14bE. I. Balmond, D. M. Coe, M. C. Galan, E. M. McGarrigle, Angew. Chem. Int. Ed. 2012, 51, 9152–9155; Angew. Chem. 2012, 124, 9286–9289;
- 14cE. I. Balmond, D. Benito-Alifonso, D. M. Coe, R. W. Alder, E. M. McGarrigle, M. C. Galan, Angew. Chem. Int. Ed. 2014, 53, 8190–8194; Angew. Chem. 2014, 126, 8329–8333;
- 14dS. Das, D. Pekel, J. M. Neudçrfl, A. Berkessel, Angew. Chem. Int. Ed. 2015, 54, 12479–12483; Angew. Chem. 2015, 127, 12656–12660;
- 14eG. A. Bradshaw, A. C. Colgan, N. P. Allen, I. Pongener, M. B. Boland, Y. Ortin, E. M. McGarrigle, Chem. Sci. 2019, 10, 508–514; For related acetalization, see:
- 14fM. Kotke, P. R. Schreiner, Synthesis 2007, 779–790;
- 14gÁ. Madarász, Z. Dósa, S. Varga, T. Soós, A. Csámpai, I. Pápai, ACS Catal. 2016, 6, 4379–4387.
- 15P. A. Colinas, R. D. Bravo, Org. Lett. 2003, 5, 4509–4511.
- 16For pioneering work, see:
- 16aH. Tanaka, Y. Iwata, D. Takahashi, M. Adachi, T. Takahashi, J. Am. Chem. Soc. 2005, 127, 1630–1631;
- 16bK. Tanaka, T. Miyagawa, K. Fukase, Synlett 2009, 1571–1754;
- 16cY. Li, X. Yang, Y. Liu, C. Zhu, Y. Yang, B. Yu, Chem. Eur. J. 2010, 16, 1871–1882;
- 16dH. A. V. Kistemaker, G. J. van der Heden van Noort, H. S. Overkleeft, G. A. van der Marel, D. V. Filippov, Org. Lett. 2013, 15, 2306–2309.
- 17
- 17aY. Kobayashi, Y. Nakatsuji, S. Li, S. Tsuzuki, Y. Takemoto, Angew. Chem. Int. Ed. 2018, 57, 3646–3650; Angew. Chem. 2018, 130, 3708–3712;
- 17bS. Li, Y. Kobayashi, Y. Takemoto, Chem. Pharm. Bull. 2018, 66, 768–770.
- 18J.-F. Brière, S. Oudeyer, V. Dalla, V. Levacher, Chem. Soc. Rev. 2012, 41, 1696–1707.
- 19Y. Geng, A. Kumar, H. M. Faidallah, H. A. Albar, I. A. Mhkalid, R. R. Schmidt, Angew. Chem. Int. Ed. 2013, 52, 10089–10092; Angew. Chem. 2013, 125, 10273–10277.
- 20
- 20aJ. M. Owens, B. K. S. Yeung, D. C. Hill, P. A. Petillo, J. Org. Chem. 2001, 66, 1484–1486;
- 20bR. J. Batchelor, D. F. Green, B. D. Johnston, B. O. Patrick, B. M. Pinto, Carbohydr. Res. 2001, 330, 421–426;
- 20cA. Srivastava, B. Varghese, D. Loganathan, Carbohydr. Res. 2013, 380, 92–100.
- 21L. Urge, L. Otvos, Jr., E. Lang, K. Wroblewski, I. Laczko, M. Hollosi, Carbohydr. Res. 1992, 235, 83–93.
- 22B. W. Clare, D. Cook, E. C. F. Ko, Y. C. Mac, A. J. Parker, J. Am. Chem. Soc. 1966, 88, 1911–1916.
- 23
- 23aI. Keresztes, P. G. Williard, J. Am. Chem. Soc. 2000, 122, 10228–10229;
- 23bD. Li, I. Keresztes, R. Hopson, P. G. Williard, Acc. Chem. Res. 2009, 42, 270–280.
- 24Y. Qiao, W. Ge, L. Jia, X. Hou, Y. Wang, M. Pederson, Chem. Commun. 2016, 52, 11418–11421.
- 25R. A. Kumpf, D. A. Dougherty, Science 1993, 261, 1708–1710.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.