Lock-and-Key and Shape-Memory Effects in an Unconventional Synthetic Path to Magnesium Metal–Organic Frameworks
Dr. Huajun Yang
Department of Chemistry and Biochemistry, California State University, Long Beach, CA, 90840 USA
Search for more papers by this authorThuong Xinh Trieu
Department of Chemistry and Biochemistry, California State University, Long Beach, CA, 90840 USA
Search for more papers by this authorDr. Xiang Zhao
Department of Chemistry, University of California, Riverside, CA, 92521 USA
Search for more papers by this authorYanxiang Wang
Department of Chemistry, University of California, Riverside, CA, 92521 USA
Search for more papers by this authorDr. Yong Wang
Department of Chemistry, University of California, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Pingyun Feng
Department of Chemistry, University of California, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Xianhui Bu
Department of Chemistry and Biochemistry, California State University, Long Beach, CA, 90840 USA
Search for more papers by this authorDr. Huajun Yang
Department of Chemistry and Biochemistry, California State University, Long Beach, CA, 90840 USA
Search for more papers by this authorThuong Xinh Trieu
Department of Chemistry and Biochemistry, California State University, Long Beach, CA, 90840 USA
Search for more papers by this authorDr. Xiang Zhao
Department of Chemistry, University of California, Riverside, CA, 92521 USA
Search for more papers by this authorYanxiang Wang
Department of Chemistry, University of California, Riverside, CA, 92521 USA
Search for more papers by this authorDr. Yong Wang
Department of Chemistry, University of California, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Pingyun Feng
Department of Chemistry, University of California, Riverside, CA, 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Xianhui Bu
Department of Chemistry and Biochemistry, California State University, Long Beach, CA, 90840 USA
Search for more papers by this authorAbstract
We report a new magnesium metal–organic framework (MOF) (CPM-107) with a special interaction with CO2. CPM-107 contains Mg2-acetate chains crosslinked into a 3D net by terephthalate. It has an anionic framework encapsulating ordered extra-framework cations and solvent molecules. The desolvated form is closed and unresponsive to common gasses, such as N2, H2, and CH4. Yet, with CO2 at 195 K, it abruptly opens and turns into a rigid porous form that is irreversible via desorption. Once opened by CO2, CPM-107 remains in the stable porous state accessible to additional gas types over multiple cycles or CO2 itself at different temperatures. The porous phase can be re-locked to return to the initial closed phase via re-solvation and desolvation. Such peculiar properties of CPM-107 are apparently linked to a convergence of factors related to both framework and extra-framework features. The unusual CO2 effect is currently the only available path to porous CPM-107 which shows efficient C2H2/CO2 separation.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201905876-sup-0001-misc_information.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Kitagawa, R. Kitaura, S. i. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334–2375; Angew. Chem. 2004, 116, 2388–2430;
- 1bH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 1cG. Férey, Chem. Soc. Rev. 2008, 37, 191–214.
- 2
- 2aS. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695;
- 2bG. Férey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380–1399;
- 2cA. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062–6096;
- 2dT. D. Bennett, A. K. Cheetham, A. H. Fuchs, F.-X. Coudert, Nat. Chem. 2017, 9, 11;
- 2eZ. Chang, D. H. Yang, J. Xu, T. L. Hu, X. H. Bu, Adv. Mater. 2015, 27, 5432–5441.
- 3
- 3aC. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louër, G. Férey, J. Am. Chem. Soc. 2002, 124, 13519–13526;
- 3bC. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk, G. Férey, Science 2007, 315, 1828–1831;
- 3cJ. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi, J. R. Long, Nature 2015, 527, 357;
- 3dA. J. Fletcher, K. M. Thomas, M. J. Rosseinsky, J. Solid State Chem. 2005, 178, 2491–2510;
- 3eL. Li, R.-B. Lin, R. Krishna, X. Wang, B. Li, H. Wu, J. Li, W. Zhou, B. Chen, J. Am. Chem. Soc. 2017, 139, 7733–7736;
- 3fJ.-P. Zhang, X.-M. Chen, J. Am. Chem. Soc. 2008, 130, 6010–6017;
- 3gD. N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed. 2004, 43, 5033–5036; Angew. Chem. 2004, 116, 5143–5146;
- 3hP. K. Thallapally, J. Tian, M. Radha Kishan, C. A. Fernandez, S. J. Dalgarno, P. B. McGrail, J. E. Warren, J. L. Atwood, J. Am. Chem. Soc. 2008, 130, 16842–16843.
- 4
- 4aS. Yuan, L. Zou, H. Li, Y. P. Chen, J. Qin, Q. Zhang, W. Lu, M. B. Hall, H. C. Zhou, Angew. Chem. Int. Ed. 2016, 55, 10776–10780; Angew. Chem. 2016, 128, 10934–10938;
- 4bJ. Su, S. Yuan, H.-Y. Wang, L. Huang, J.-Y. Ge, E. Joseph, J. Qin, T. Cagin, J.-L. Zuo, H.-C. Zhou, Nat. Commun. 2017, 8, 2008;
- 4cA.-X. Zhu, Q.-Y. Yang, A. Kumar, C. Crowley, S. Mukherjee, K.-J. Chen, S.-Q. Wang, D. O'Nolan, M. Shivanna, M. J. Zaworotko, J. Am. Chem. Soc. 2018, 140, 15572–15576;
- 4dM. Shivanna, Q.-Y. Yang, A. Bajpai, S. Sen, N. Hosono, S. Kusaka, T. Pham, K. A. Forrest, B. Space, S. Kitagawa, M. J. Zaworotko, Sci. Adv. 2018, 4, eaaq 1636;
- 4eJ. Rabone, Y.-F. Yue, S. Y. Chong, K. C. Stylianou, J. Bacsa, D. Bradshaw, G. R. Darling, N. G. Berry, Y. Z. Khimyak, A. Y. Ganin, P. Wiper, J. B. Claridge, M. J. Rosseinsky, Science 2010, 329, 1053–1057.
- 5
- 5aS. Bourrelly, P. L. Llewellyn, C. Serre, F. Millange, T. Loiseau, G. Férey, J. Am. Chem. Soc. 2005, 127, 13519–13521;
- 5bS. Couck, J. F. M. Denayer, G. V. Baron, T. Rémy, J. Gascon, F. Kapteijn, J. Am. Chem. Soc. 2009, 131, 6326–6327;
- 5cV. Bon, N. Klein, I. Senkovska, A. Heerwig, J. Getzschmann, D. Wallacher, I. Zizak, M. Brzhezinskaya, U. Mueller, S. Kaskel, Phys. Chem. Chem. Phys. 2015, 17, 17471–17479;
- 5dF. Salles, G. Maurin, C. Serre, P. L. Llewellyn, C. Knöfel, H. J. Choi, Y. Filinchuk, L. Oliviero, A. Vimont, J. R. Long, G. Férey, J. Am. Chem. Soc. 2010, 132, 13782–13788;
- 5eB. Mu, F. Li, Y. Huang, K. S. Walton, J. Mater. Chem. 2012, 22, 10172–10178;
- 5fS. Henke, A. Schneemann, A. Wütscher, R. A. Fischer, J. Am. Chem. Soc. 2012, 134, 9464–9474.
- 6
- 6aF.-X. Coudert, C. Mellot-Draznieks, A. H. Fuchs, A. Boutin, J. Am. Chem. Soc. 2009, 131, 11329–11331;
- 6bD. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, T. Düren, J. Am. Chem. Soc. 2011, 133, 8900–8902;
- 6cJ.-J. Zheng, S. Kusaka, R. Matsuda, S. Kitagawa, S. Sakaki, J. Am. Chem. Soc. 2018, 140, 13958–13969;
- 6dQ. Yang, D. Liu, C. Zhong, J.-R. Li, Chem. Rev. 2013, 113, 8261–8323.
- 7
- 7aH.-S. Choi, M. P. Suh, Angew. Chem. Int. Ed. 2009, 48, 6865–6869; Angew. Chem. 2009, 121, 6997–7001;
- 7bS.-m. Hyun, J. H. Lee, G. Y. Jung, Y. K. Kim, T. K. Kim, S. Jeoung, S. K. Kwak, D. Moon, H. R. Moon, Inorg. Chem. 2016, 55, 1920–1925.
- 8
- 8aN. Nijem, H. Wu, P. Canepa, A. Marti, K. J. Balkus, T. Thonhauser, J. Li, Y. J. Chabal, J. Am. Chem. Soc. 2012, 134, 15201–15204;
- 8bL. Li, R. Krishna, Y. Wang, J. Yang, X. Wang, J. Li, J. Mater. Chem. A 2016, 4, 751–755;
- 8cM. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata, S. Kitagawa, J. Am. Chem. Soc. 2016, 138, 3022–3030.
- 9
- 9aS. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake, M. Schröder, Nat. Mater. 2012, 11, 710;
- 9bE. R. Engel, A. Jouaiti, C. X. Bezuidenhout, M. W. Hosseini, L. J. Barbour, Angew. Chem. Int. Ed. 2017, 56, 8874–8878; Angew. Chem. 2017, 129, 9000–9004.
- 10Y. Sakata, S. Furukawa, M. Kondo, K. Hirai, N. Horike, Y. Takashima, H. Uehara, N. Louvain, M. Meilikhov, T. Tsuruoka, S. Isoda, W. Kosaka, O. Sakata, S. Kitagawa, Science 2013, 339, 193–196.
- 11
- 11aM. Behl, M. Y. Razzaq, A. Lendlein, Adv. Mater. 2010, 22, 3388–3410;
- 11bR. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Nature 2006, 439, 957–960.
- 12
- 12aM. Shivanna, Q.-Y. Yang, A. Bajpai, S. Sen, N. Hosono, S. Kusaka, T. Pham, K. A. Forrest, B. Space, S. Kitagawa, M. J. Zaworotko, Sci. Adv. 2018, 4, eaaq 1636;
- 12bM. Shivanna, Q.-Y. Yang, A. Bajpai, E. Patyk-Kazmierczak, M. J. Zaworotko, Nat. Commun. 2018, 9, 3080.
- 13
- 13aQ.-G. Zhai, X. Bu, C. Mao, X. Zhao, L. Daemen, Y. Cheng, A. J. Ramirez-Cuesta, P. Feng, Nat. Commun. 2016, 7, 13645;
- 13bQ.-G. Zhai, X. Bu, X. Zhao, C. Mao, F. Bu, X. Chen, P. Feng, Cryst. Growth Des. 2016, 16, 1261–1267;
- 13cX.-J. Lei, X.-Y. Hou, S.-N. Li, Y.-C. Jiang, G.-X. Sun, M.-C. Hu, Q.-G. Zhai, Inorg. Chem. 2018, 57, 14280–14289;
- 13dP. Ramaswamy, N. E. Wong, B. S. Gelfand, G. K. Shimizu, J. Am. Chem. Soc. 2015, 137, 7640–7643.
- 14P. Horcajada, F. Salles, S. Wuttke, T. Devic, D. Heurtaux, G. Maurin, A. Vimont, M. Daturi, O. David, E. Magnier, N. Stock, Y. Filinchuk, D. Popov, C. Riekel, G. Férey, C. Serre, J. Am. Chem. Soc. 2011, 133, 17839–17847.
- 15
- 15aF. Rouquerol, J. Rouquerol, K. Sing, Adsorption by powders and porous solids, Academic Press, London, 1999, pp. 204–206;
- 15bA. Gil, S. A. Korili, M. A. Vicente, Catal. Rev. Sci. Eng. 2008, 50, 153–221.
- 16X. Li, X. Chen, F. Jiang, L. Chen, S. Lu, Q. Chen, M. Wu, D. Yuan, M. Hong, Chem. Commun. 2016, 52, 2277–2280.
- 17J. Ma, A. P. Kalenak, A. G. Wong-Foy, A. J. Matzger, Angew. Chem. Int. Ed. 2017, 56, 14618–14621; Angew. Chem. 2017, 129, 14810–14813.
- 18L. Chen, J. P. Mowat, D. Fairen-Jimenez, C. A. Morrison, S. P. Thompson, P. A. Wright, T. Düren, J. Am. Chem. Soc. 2013, 135, 15763–15773.
- 19
- 19aH. J. Choi, M. Dincă, J. R. Long, J. Am. Chem. Soc. 2008, 130, 7848–7850;
- 19bM. K. Taylor, T. Runčevski, J. Oktawiec, M. I. Gonzalez, R. L. Siegelman, J. A. Mason, J. Ye, C. M. Brown, J. R. Long, J. Am. Chem. Soc. 2016, 138, 15019–15026.
- 20E. J. Carrington, C. A. McAnally, A. J. Fletcher, S. P. Thompson, M. Warren, L. Brammer, Nat. Chem. 2017, 9, 882.
- 21K.-J. Chen, H. S. Scott, D. G. Madden, T. Pham, A. Kumar, A. Bajpai, M. Lusi, K. A. Forrest, B. Space, J. J. Perry, M. J. Zaworotko, Chem 2016, 1, 753–765.
- 22
- 22aR.-B. Lin, L. Li, H. Wu, H. Arman, B. Li, R.-G. Lin, W. Zhou, B. Chen, J. Am. Chem. Soc. 2017, 139, 8022–8028;
- 22bP. Li, Y. He, Y. Zhao, L. Weng, H. Wang, R. Krishna, H. Wu, W. Zhou, M. O'Keeffe, Y. Han, B. Chen, Angew. Chem. Int. Ed. 2015, 54, 574–577; Angew. Chem. 2015, 127, 584–587.
- 23Y. Ye, Z. Ma, R.-B. Lin, R. Krishna, W. Zhou, Q. Lin, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 2019, 141, 4130–4136.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.