Enhanced Charge Transport by Incorporating Formamidinium and Cesium Cations into Two-Dimensional Perovskite Solar Cells
Dr. Liguo Gao
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Department of Chemistry, Colorado School of Mines, Golden, CO, USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Fei Zhang
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Xihan Chen
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorDr. Chuanxiao Xiao
Materials Science Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorDr. Bryon W. Larson
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorSean P. Dunfield
Materials Science Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309 USA
Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80309 USA
Search for more papers by this authorDr. Joseph J. Berry
Materials Science Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorCorresponding Author
Dr. Kai Zhu
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorDr. Liguo Gao
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Department of Chemistry, Colorado School of Mines, Golden, CO, USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Fei Zhang
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Xihan Chen
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorDr. Chuanxiao Xiao
Materials Science Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorDr. Bryon W. Larson
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorSean P. Dunfield
Materials Science Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309 USA
Materials Science and Engineering Program, University of Colorado, Boulder, CO, 80309 USA
Search for more papers by this authorDr. Joseph J. Berry
Materials Science Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorCorresponding Author
Dr. Kai Zhu
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401 USA
Search for more papers by this authorAbstract
Organic-inorganic hybrid two-dimensional (2D) perovskites (n≤5) have recently attracted significant attention because of their promising stability and optoelectronic properties. Normally, 2D perovskites contain a monocation [e.g., methylammonium (MA+) or formamidinium (FA+)]. Reported here for the first time is the fabrication of 2D perovskites (n=5) with mixed cations of MA+, FA+, and cesium (Cs+). The use of these triple cations leads to the formation of a smooth, compact surface morphology with larger grain size and fewer grain boundaries compared to the conventional MA-based counterpart. The resulting perovskite also exhibits longer carrier lifetime and higher conductivity in triple cation 2D perovskite solar cells (PSCs). The power conversion efficiency (PCE) of 2D PSCs with triple cations was enhanced by more than 80 % (from 7.80 to 14.23 %) compared to PSCs fabricated with a monocation. The PCE is also higher than that of PSCs based on binary cation (MA+-FA+ or MA+-Cs+) 2D structures.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201905690-sup-0001-misc_information.pdf1.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Hodes, Science 2013, 342, 317;
- 1bA. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050;
- 1cF. Zhang, W. Shi, J. Luo, N. Pellet, C. Yi, X. Li, X. Zhao, T. J. S. Dennis, X. Li, S. Wang, Y. Xiao, S. M. Zakeeruddin, D. Bi, M. Grätzel, Adv. Mater. 2017, 29, 1606806;
- 1dF. Zhang, D. Q. Bi, N. Pellet, C. X. Xiao, Z. Li, J. J. Berry, S. M. Zakeeruddin, K. Zhu, M. Grätzel, Energy Environ. Sci. 2018, 11, 3480.
- 2NREL Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html.
- 3A. R. M. Yusoff, M. K. Nazeeruddin, Adv. Energy Mater. 2018, 8, 1702073.
- 4E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffey, L. Dou, Chem. Soc. Rev. 2018, 47, 6046.
- 5
- 5aL. Etgar, Energy Environ. Sci. 2018, 11, 234;
- 5bF. Zhang, D. Kim, K. Zhu, Curr. Opin. Electrochem. 2018, 11, 105.
- 6S. Yang, Y. Wang, P. Liu, Y.-B. Cheng, H. J. Zhao, H. G. Yang, Nat. Energy 2016, 1, 15016.
- 7
- 7aZ. Guo, X. Wu, T. Zhu, X. Zhu, L. Huang, ACS Nano 2016, 10, 9992;
- 7bX. Chen, H. Lu, Z. Li, Y. Zhai, P. F. Ndione, J. J. Berry, K. Zhu, Y. Yang, M. C. Beard, ACS Energy Lett. 2018, 3, 2273.
- 8
- 8aY. N. Chen, Y. Sun, J. J. Peng, W. Zhang, X. J. Su, K. B. Zheng, T. Pullerits, Z. Q. Liang, Adv. Energy Mater. 2017, 7, 1700162;
- 8bT. M. Koh, V. Shanmugam, X. Guo, S. S. Lim, O. Filonik, E. M. Herzig, P. Müller-Buschbaum, V. Swamy, S. T. Chien, S. G. Mhaisalkar, N. Mathews, J. Mater. Chem. A 2018, 6, 2122.
- 9Y. Lin, Y. Bai, Y. J. Fang, Q. Wang, Y. H. Deng, J. S. Huang, ACS Energy Lett. 2017, 2, 1571.
- 10
- 10aX. Zhang, G. Wu, S. Yang, W. Fu, Z. Zhang, C. Chen, W. Liu, J. Yan, W. Yang, H. Chen, Small 2017, 13, 1700611;
- 10bY. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, J. Am. Chem. Soc. 2014, 136, 11610;
- 10cF. Zhang, D. H. Kim, H. Lu, J. Park, B. Larson, J. Hu, L. Gao, C. Xiao, O. Reid, X. Chen, Q. Zhao, P. F. Ndione, J. J. Berry, W. You, A. Walsh, M. C. Beard, K. Zhu, J. Am. Chem. Soc. 2019, 141, 5972.
- 11
- 11aC. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Energy Environ. Sci. 2016, 9, 656;
- 11bD. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, Science 2016, 351, 151.
- 12X. Zhang, X. Ren, B. Liu, R. Munir, X. Zhu, D. Yang, J. Li, Y. Liu, D.-M. Smilgies, R. Li, Z. Yang, T. Niu, X. Wang, A. Amassian, K. Zhao, S. Liu, Energy Environ. Sci. 2017, 10, 2095.
- 13N. Zhou, Y. H. Shen, L. Li, S. Q. Tan, N. Liu, G. J. Zheng, Q. Chen, H. P. Zhou, J. Am. Chem. Soc. 2018, 140, 459.
- 14
- 14aM. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldtd, M. Grätzel, Energy Environ. Sci. 2016, 9, 1989;
- 14bF. Bella, P. Renzi, C. Cavallo, C. Gerbaldi, Chem. Eur. J. 2018, 24, 12183;
- 14cM. Deepa, M. Salado, L. Calio, S. Kazim, S. M. Shivaprasad, S. Ahmad, Phys. Chem. Chem. Phys. 2017, 19, 4069.
- 15L. T. Schelhas, Z. Li, J. A. Christians, A. Goyal, P. Kairys, S. P. Harvey, D. H. Kim, K. H. Stone, J. M. Luther, K. Zhu, V. Stevanovic, J. J. Berry, Energy Environ. Sci. 2019, 12, 1341.
- 16M. Salado, R. K. Kokal, L. Calio, S. Kazim, M. Deepa, S. Ahmad, Phys. Chem. Chem. Phys. 2017, 19, 22905.
- 17
- 17aM. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, A. J. Pearson, S. Lilliu, T. J. Savenije, H. Rensmo, G. Divitini, C. Ducati, R. H. Friend, S. D. Stranks, Nature 2018, 555, 497;
- 17bS. Turren-Cruz, M. Saliba, M. T. Mayer, H. Juárez-Santiesteban, X. Mathew, L. Nienhaus, W. Tress, M. P. Erodici, M. Sher, M. G. Bawendi, M. Grätzel, A. Abate, A. Hagfeldt, J. Correa-Baena, Energy Environ. Sci. 2018, 11, 78.
- 18
- 18aF. Zhang, C. Y. Yi, P. Wei, X. D. Bi, J. S. Luo, G. Jacopin, S. R. Wang, X. G. Li, Y. Xiao, S. M. Zakeeruddin, M. Grätzel, Adv. Energy Mater. 2016, 6, 1600401;
- 18bS. Q. Tan, N. Zhou, Y. H. Chen, L. Li, G. L. Liu, P. F. Liu, C. Zhu, J. Z. Lu, W. T. Sun, Q. Chen, H. P. Zhou, Adv. Energy Mater. 2018, 9, 1803024;
- 18cF. Zhang, C. X. Xiao, X. H. Chen, B. W. Larson, S. P. Harvey, J. J. Berry, K. Zhu, Joule 2019, 3, 1452.
- 19
- 19aW. Li, J. Fan, J. Li, Y. Mai, L. Wang, J. Am. Chem. Soc. 2015, 137, 10399;
- 19bC.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2015, 8, 2725.
- 20
- 20aI. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, H. I. Karunadasa, Angew. Chem. Int. Ed. 2014, 53, 11232; Angew. Chem. 2014, 126, 11414;
- 20bJ. Qing, X. Liu, M. Li, F. Liu, Z. Yuan, E. Tiukalova, Z. Yan, M. Duchamp, S. Chen, Y. Wang, S. Bai, J.-M. Liu, H. J. Snaith, C.-S. Lee, T. C. Sum, F. Gao, Adv. Energy Mater. 2018, 8, 1800185.
- 21A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, F. D. Angelis, Nano Lett. 2014, 14, 3608.
- 22K. Domanski, J.-P. Correa-Baena, N. Mine, M. K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Grätzel, ACS Nano 2016, 10, 6306.
- 23X. Zhang, R. Munir, Z. Xu, Y. Liu, H. Tsai, W. Nie, J. Li, T. Niu, D.-M. Smilgies, M. G. Kanatzidis, A. D. Mohite, K. Zhao, A. Amassian, S. Liu, Adv. Mater. 2018, 30, 1707166.
- 24
- 24aE. Zhao, L. Gao, S. Yang, L. Wang, J. Cao, T. Ma, Nano Res. 2018, 11, 5913;
- 24bF. Meng, L. Gao, Y. Yan, J. Cao, N. Wang, T. Wang, T. Ma, Carbon 2019, 145, 290.
- 25
- 25aO. G. Reid, M. J. Yang, N. Kopidakis, K. Zhu, G. Rumbles, ACS Energy Lett. 2016, 1, 561;
- 25bL. Gao, F. Zhang, C. Xiao, X. Chen, B. W. Larson, J. J. Berry, K. Zhu, Adv. Funct. Mater. 2019, 1901652.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.