Kathodenmaterialien für wiederaufladbare Lithiumbatterien
Wontae Lee
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 Südkorea
Search for more papers by this authorShoaib Muhammad
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 Südkorea
Search for more papers by this authorChernov Sergey
Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620 Südkorea
Search for more papers by this authorHayeon Lee
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 Südkorea
Search for more papers by this authorJaesang Yoon
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 Südkorea
Search for more papers by this authorCorresponding Author
Prof. Yong-Mook Kang
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Südkorea
Search for more papers by this authorCorresponding Author
Won-Sub Yoon
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 Südkorea
Search for more papers by this authorWontae Lee
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 Südkorea
Search for more papers by this authorShoaib Muhammad
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 Südkorea
Search for more papers by this authorChernov Sergey
Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620 Südkorea
Search for more papers by this authorHayeon Lee
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 Südkorea
Search for more papers by this authorJaesang Yoon
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 Südkorea
Search for more papers by this authorCorresponding Author
Prof. Yong-Mook Kang
Department of Materials Science and Engineering, Korea University, Seoul, 02841 Südkorea
Search for more papers by this authorCorresponding Author
Won-Sub Yoon
Department of Energy Science, Sungkyunkwan University, Suwon, 440–746 Südkorea
Search for more papers by this authorAbstract
Die rasante Entwicklung vieler moderner Technologien erfordert einen erheblichen Energieverbrauch, infolgedessen steigt die Nachfrage nach fortschrittlichen Energiespeichern stark an. In den letzten zwei Jahrzehnten haben sich Lithiumionenbatterien, mit ihrer hohen Energie- und Leistungsdichte, als die robusteste Energiespeichertechnologie etabliert. Die Verbesserung der Kathodenmaterialien ist eine der Möglichkeiten, den Bedarf an noch besseren Batterien zu erfüllen. Die Entwicklung neuartiger Kathodenmaterialien durch Erhöhung der Zellspannung und -kapazität bei gleichzeitiger Stabilität ebnet daher den Weg zu den Li-Akkus der nächsten Generation. Um dieses Ziel zu erreichen, sind das Verständnis der Materialprinzipien und das Erkennen der Probleme, mit denen moderne Kathodenmaterialien konfrontiert sind, wesentliche Voraussetzungen. Dieser Aufsatz stellt verschiedene Materialien für Hochenergiekathoden vor, die für die Konstruktion von Lithiumionenbatterien der nächsten Generation genutzt werden könnten. Hierzu gehören nickel- und lithiumreiche Schichtoxidmaterialien, Spinelloxide, Polyanionen, Steinsalzoxide mit Kationenfehlordnung und Konversionsmaterialien. Besonderes Augenmerk liegt auf den allgemeinen Reaktions- und Abbaumechanismen während des Betriebs sowie auf den wichtigsten Herausforderungen und Strategien zur Überwindung der Nachteile dieser Materialien.
Conflict of interest
Die Autoren erklären, dass keine Interessenkonflikte vorliegen.
References
- 1M. Armand, J.-M. Tarascon, Nature 2008, 451, 652–657.
- 2J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167–1176.
- 3W. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006–3059.
- 4C. Masquelier, L. Croguennec, Chem. Rev. 2013, 113, 6552–6591.
- 5A. Manthiram, J. C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Adv. Energy Mater. 2016, 6, 1501010.
- 6A. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater. 2012, 2, 922–939.
- 7L. Croguennec, M. R. Palacin, J. Am. Chem. Soc. 2015, 137, 3140–3156.
- 8J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.
- 9J. Lee, D.-H. Seo, M. Balasubramanian, N. Twu, X. Li, G. Ceder, Energy Environ. Sci. 2015, 8, 3255–3265.
- 10N. Yabuuchi, M. Takeuchi, M. Nakayama, H. Shiiba, M. Ogawa, K. Nakayama, T. Ohta, D. Endo, T. Ozaki, T. Inamasu, et al., Proc. Natl. Acad. Sci. 2015, 112, 7650–7655.
- 11N. Yabuuchi, Chem. Lett. 2017, 46, 412–422.
- 12F. Wu, G. Yushin, Energy Environ. Sci. 2017, 10, 435–459.
- 13A. Kraytsberg, Y. Ein-Eli, J. Solid State Electrochem. 2017, 21, 1907–1923.
- 14C. Delmas, C. Fouassier, P. Hagenmuller, Phys. B+C 1980, 99, 81–85.
- 15C. Zhao, M. Avdeev, L. Chen, Y.-S. Hu, Angew. Chem. Int. Ed. 2018, 57, 7056–7060; Angew. Chem. 2018, 130, 7174–7178.
- 16P. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 2018, 57, 102–120; Angew. Chem. 2018, 130, 106–126.
- 17R. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.
- 18J. Bréger, Y. S. Meng, Y. Hinuma, S. Kumar, K. Kang, Y. Shao-Horn, G. Ceder, C. P. Grey, Chem. Mater. 2006, 18, 4768–4781.
- 19H. Yu, H. Kim, Y. Wang, P. He, D. Asakura, Y. Nakamura, H. Zhou, Phys. Chem. Chem. Phys. 2012, 14, 6584.
- 20A. Boulineau, L. Simonin, J.-F. Colin, E. Canévet, L. Daniel, S. Patoux, Chem. Mater. 2012, 24, 3558–3566.
- 21H. Yu, R. Ishikawa, Y.-G. So, N. Shibata, T. Kudo, H. Zhou, Y. Ikuhara, Angew. Chem. Int. Ed. 2013, 52, 5969–5973; Angew. Chem. 2013, 125, 6085–6089.
- 22B. Ammundsen, J. Paulsen, I. Davidson, R.-S. Liu, C.-H. Shen, J.-M. Chen, L.-Y. Jang, J.-F. Lee, J. Electrochem. Soc. 2002, 149, A 431.
- 23T. Ohzuku, M. Nagayama, K. Tsuji, K. Ariyoshi, J. Mater. Chem. 2011, 21, 10179.
- 24M. M. Thackeray, M. H. Rossouw, R. J. Gummow, D. C. Liles, K. Pearce, A. De Kock, W. I. F. David, S. Hull, Electrochim. Acta 1993, 38, 1259–1267.
- 25R. J. Gummow, A. de Kock, M. M. Thackeray, Solid State Ionics 1994, 69, 59–67.
- 26D. H. Jang, Y. J. Shin, S. M. Oh, J. Electrochem. Soc. 1996, 143, 2204.
- 27G. G. Amatucci, C. N. Schmutz, A. Blyr, C. Sigala, A. S. Gozdz, D. Larcher, J. M. Tarascon, J. Power Sources 1997, 69, 11–25.
- 28D. H. Jang, S. M. Oh, J. Electrochem. Soc. 1997, 144, 3342.
- 29T. Ohzuku, S. Takeda, M. Iwanaga, J. Power Sources 1999, 81–82, 90–94.
- 30K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Power Sources 1997, 68, 604–608.
- 31Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J. R. Dahn, J. Electrochem. Soc. 1997, 144, 205.
- 32S. Patoux, L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F. Le Cras, S. Jouanneau, S. Martinet, J. Power Sources 2009, 189, 344–352.
- 33J. Song, D. W. Shin, Y. Lu, C. D. Amos, A. Manthiram, J. B. Goodenough, Chem. Mater. 2012, 24, 3101–3109.
- 34A. Manthiram, K. Chemelewski, E.-S. Lee, Energy Environ. Sci. 2014, 7, 1339.
- 35J.-H. Kim, S.-T. Myung, C. S. Yoon, S. G. Kang, Y.-K. Sun, Chem. Mater. 2004, 16, 906–914.
- 36N. Amdouni, K. Zaghib, F. Gendron, A. Mauger, C. M. Julien, Ionics 2006, 12, 117–126.
- 37L. Wang, H. Li, X. Huang, E. Baudrin, Solid State Ionics 2011, 193, 32–38.
- 38M. Kunduraci, J. F. Al-Sharab, G. G. Amatucci, Chem. Mater. 2006, 18, 3585–3592.
- 39C. Delmas, A. Nadiri, J. L. Soubeyroux, Solid State Ionics 1988, 28–30, 419–423.
- 40C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Solid State Chem. 1998, 135, 228–234.
- 41J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Chem. Mater. 2000, 12, 3240–3242.
- 42S. Patoux, C. Wurm, M. Morcrette, G. Rousse, C. Masquelier, J. Power Sources 2003, 119–121, 278–284.
- 43S.-C. Yin, H. Grondey, P. Strobel, H. Huang, L. F. Nazar, J. Am. Chem. Soc. 2003, 125, 326–327.
- 44C. A. J. Fisher, V. M. Hart Prieto, M. S. Islam, Chem. Mater. 2008, 20, 5907–5915.
- 45G. Rousse, J. Rodriguez-Carvajal, S. Patoux, C. Masquelier, Chem. Mater. 2003, 15, 4082–4090.
- 46J. Barker, M. Y. Saidi, J. L. Swoyer, J. Electrochem. Soc. 2003, 150, A 1394.
- 47N. Recham, J.-N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J.-M. Tarascon, Nat. Mater. 2010, 9, 68–74.
- 48G. Rousse, J. M. Tarascon, Chem. Mater. 2014, 26, 394–406.
- 49J. Lee, D. A. Kitchaev, D.-H. Kwon, C.-W. Lee, J. K. Papp, Y.-S. Liu, Z. Lun, R. J. Clément, T. Shi, B. D. McCloskey, et al., Nature 2018, 556, 185–190.
- 50R. Chen, S. Ren, M. Knapp, D. Wang, R. Witter, M. Fichtner, H. Hahn, Adv. Energy Mater. 2015, 5, 1401814.
- 51R. Wang, X. Li, L. Liu, J. Lee, D.-H. Seo, S.-H. Bo, A. Urban, G. Ceder, Electrochem. Commun. 2015, 60, 70–73.
- 52J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Science 2014, 343, 519–522.
- 53A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 2000, 3, 301–304.
- 54A. Van der Ven, G. Ceder, J. Power Sources 2001, 97–98, 529–531.
- 55L. Croguennec, C. Pouillerie, A. N. Mansour, C. Delmas, J. Mater. Chem. 2001, 11, 131–141.
- 56W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J.-H. Ryou, W.-S. Yoon, Adv. Energy Mater. 2018, 8, 1701788.
- 57A. Van der Ven, M. K. Aydinol, G. Ceder, G. Kresse, J. Hafner, Phys. Rev. B 1998, 58, 2975–2987.
- 58B. J. Hwang, Y. W. Tsai, D. Carlier, G. Ceder, Chem. Mater. 2003, 15, 3676–3682.
- 59W.-S. Yoon, M. Balasubramanian, K. Y. Chung, X.-Q. Yang, J. McBreen, C. P. Grey, D. A. Fischer, J. Am. Chem. Soc. 2005, 127, 17479–17487.
- 60Y. Wu, A. Manthiram, Electrochem. Solid-State Lett. 2007, 10, A 151.
- 61Z. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn, J. Electrochem. Soc. 2002, 149, A 778.
- 62A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S.-H. Kang, M. M. Thackeray, P. G. bruce, J. Am. Chem. Soc. 2006, 128, 8694–8698.
- 63S. Muhammad, H. Kim, Y. Kim, D. Kim, J. H. Song, J. Yoon, J.-H. Park, S.-J. Ahn, S.-H. Kang, M. M. Thackeray, et al., Nano Energy 2016, 21, 172–184.
- 64J. M. Zheng, Z. R. Zhang, X. B. Wu, Z. X. Dong, Z. Zhu, Y. Yang, J. Electrochem. Soc. 2008, 155, A 775.
- 65Y. Koyama, I. Tanaka, M. Nagao, R. Kanno, J. Power Sources 2009, 189, 798–801.
- 66P. Xiao, Z. Q. Deng, A. Manthiram, G. Henkelman, J. Phys. Chem. C 2012, 116, 23201–23204.
- 67K. Luo, M. R. Roberts, R. Hao, N. Guerrini, D. M. Pickup, Y.-S. Liu, K. Edström, J. Guo, A. V. Chadwick, L. C. Duda, et al., Nat. Chem. 2016, 8, 684–691.
- 68E. McCalla, M. T. Sougrati, G. Rousse, E. J. Berg, A. Abakumov, N. Recham, K. Ramesha, M. Sathiya, R. Dominko, G. Van Tendeloo, et al., J. Am. Chem. Soc. 2015, 137, 4804–4814.
- 69M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, A. S. Prakash, M. L. Doublet, K. Hemalatha, J.-M. Tarascon, Chem. Mater. 2013, 25, 1121–1131.
- 70M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M.-L. Doublet, D. Foix, D. Gonbeau, W. Walker, et al., Nat. Mater. 2013, 12, 827–835.
- 71E. McCalla, A. M. Abakumov, M. Saubanere, D. Foix, E. J. Berg, G. Rousse, M.-L. Doublet, D. Gonbeau, P. Novak, G. Van Tendeloo, et al., Science 2015, 350, 1516–1521.
- 72D.-H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 2016, 8, 692–697.
- 73M. Ben Yahia, J. Vergnet, M. Saubanère, M.-L. Doublet, Nat. Mater. 2019, https://doi.org/10.1038/s41563-019-0318-3.
- 74D. Liu, J. Hamel-Paquet, J. Trottier, F. Barray, V. Gariépy, P. Hovington, A. Guerfi, A. Mauger, C. M. Julien, J. B. Goodenough, et al., J. Power Sources 2012, 217, 400–406.
- 75J. Yang, S. Muhammad, M. R. Jo, H. Kim, K. Song, D. A. Agyeman, Y.-I. Kim, W.-S. Yoon, Y.-M. Kang, Chem. Soc. Rev. 2016, 45, 5717–5770.
- 76Y. Terada, K. Yasaka, F. Nishikawa, T. Konishi, M. Yoshio, I. Nakai, J. Solid State Chem. 2001, 156, 286–291.
- 77S. Mukerjee, X.. Yang, X. Sun, S.. Lee, J. McBreen, Y. Ein-Eli, Electrochim. Acta 2004, 49, 3373–3382.
- 78X. Rui, Q. Yan, M. Skyllas-Kazacos, T. M. Lim, J. Power Sources 2014, 258, 19–38.
- 79S.-C. Yin, H. Grondey, P. Strobel, M. Anne, L. F. Nazar, J. Am. Chem. Soc. 2003, 125, 10402–10411.
- 80S.-C. Yin, P. S. Strobel, H. Grondey, L. F. Nazar, Chem. Mater. 2004, 16, 1456–1465.
- 81S. Lee, S. S. Park, J. Phys. Chem. C 2012, 116, 25190–25197.
- 82D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 2004, 7, A 30.
- 83M. S. Islam, D. J. Driscoll, C. A. J. Fisher, P. R. Slater, Chem. Mater. 2005, 17, 5085–5092.
- 84S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nat. Mater. 2008, 7, 707–711.
- 85J. Yang, J. S. Tse, J. Phys. Chem. A 2011, 115, 13045–13049.
- 86A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 1997, 144, 1188–1194.
- 87V. Srinivasan, J. Newman, J. Electrochem. Soc. 2004, 151, A 1517.
- 88N. Meethong, H.-Y. S. Huang, S. A. Speakman, W. C. Carter, Y.-M. Chiang, Adv. Funct. Mater. 2007, 17, 1115–1123.
- 89C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nat. Mater. 2008, 7, 665–671.
- 90G. Brunetti, D. Robert, P. Bayle-Guillemaud, J. L. Rouvière, E. F. Rauch, J. F. Martin, J. F. Colin, F. Bertin, C. Cayron, Chem. Mater. 2011, 23, 4515–4524.
- 91R. Malik, F. Zhou, G. Ceder, Nat. Mater. 2011, 10, 587–590.
- 92F. Omenya, N. A. Chernova, R. Zhang, J. Fang, Y. Huang, F. Cohen, N. Dobrzynski, S. Senanayake, W. Xu, M. S. Whittingham, Chem. Mater. 2013, 25, 85–89.
- 93N. Meethong, Y.-H. Kao, M. Tang, H.-Y. Huang, W. C. Carter, Y.-M. Chiang, Chem. Mater. 2008, 20, 6189–6198.
- 94W. Dreyer, J. Jamnik, C. Guhlke, R. Huth, J. Moškon, M. Gaberšček, Nat. Mater. 2010, 9, 448–453.
- 95H. Liu, F. C. Strobridge, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, P. J. Chupas, C. P. Grey, Science 2014, 344, 1252817.
- 96R. Malik, A. Abdellahi, G. Ceder, J. Electrochem. Soc. 2013, 160, A 3179–A3197.
- 97L. Laffont, C. Delacourt, P. Gibot, M. Y. Wu, P. Kooyman, C. Masquelier, J. M. Tarascon, Chem. Mater. 2006, 18, 5520–5529.
- 98Y. Li, F. El Gabaly, T. R. Ferguson, R. B. Smith, N. C. Bartelt, J. D. Sugar, K. R. Fenton, D. A. Cogswell, A. L. D. Kilcoyne, T. Tyliszczak, et al., Nat. Mater. 2014, 13, 1149–1156.
- 99X. Zhang, M. van Hulzen, D. P. Singh, A. Brownrigg, J. P. Wright, N. H. van Dijk, M. Wagemaker, Nat. Commun. 2015, 6, 8333.
- 100F. C. Strobridge, H. Liu, M. Leskes, O. J. Borkiewicz, K. M. Wiaderek, P. J. Chupas, K. W. Chapman, C. P. Grey, Chem. Mater. 2016, 28, 3676–3690.
- 101T. Mueller, G. Hautier, A. Jain, G. Ceder, Chem. Mater. 2011, 23, 3854–3862.
- 102R. J. Messinger, M. Ménétrier, E. Salager, A. Boulineau, M. Duttine, D. Carlier, J.-M. Ateba Mba, L. Croguennec, C. Masquelier, D. Massiot, et al., Chem. Mater. 2015, 27, 5212–5221.
- 103M. Kim, S. Lee, B. Kang, Adv. Sci. 2016, 3, 1500366.
- 104R. Tripathi, G. R. Gardiner, M. S. Islam, L. F. Nazar, Chem. Mater. 2011, 23, 2278–2284.
- 105C. Delacourt, M. Ati, J. M. Tarascon, J. Electrochem. Soc. 2011, 158, A 741.
- 106A. Urban, J. Lee, G. Ceder, Adv. Energy Mater. 2014, 4, 1400478.
- 107L. Li, F. Meng, S. Jin, Nano Lett. 2012, 12, 6030–6037.
- 108F. Wang, S.-W. Kim, D.-H. Seo, K. Kang, L. Wang, D. Su, J. J. Vajo, J. Wang, J. Graetz, Nat. Commun. 2015, 6, 6668.
- 109F. Badway, F. Cosandey, N. Pereira, G. G. Amatucci, J. Electrochem. Soc. 2003, 150, A 1318.
- 110R. F. Li, S. Q. Wu, Y. Yang, Z. Z. Zhu, J. Phys. Chem. C 2010, 114, 16813–16817.
- 111R. E. Doe, K. A. Persson, Y. S. Meng, G. Ceder, Chem. Mater. 2008, 20, 5274–5283.
- 112N. Yamakawa, M. Jiang, B. Key, C. P. Grey, J. Am. Chem. Soc. 2009, 131, 10525–10536.
- 113F. Cosandey, J. F. Al-Sharab, F. Badway, G. G. Amatucci, P. Stadelmann, Microsc. Microanal. 2007, 13, 87–95.
- 114W. Zhang, P. N. Duchesne, Z.-L. Gong, S.-Q. Wu, L. Ma, Z. Jiang, S. Zhang, P. Zhang, J.-X. Mi, Y. Yang, J. Phys. Chem. C 2013, 117, 11498–11505.
- 115J. K. Ko, K. M. Wiaderek, N. Pereira, T. L. Kinnibrugh, J. R. Kim, P. J. Chupas, K. W. Chapman, G. G. Amatucci, ACS Appl. Mater. Interfaces 2014, 6, 10858–10869.
- 116L. Li, Y.-C. K. Chen-Wiegart, J. Wang, P. Gao, Q. Ding, Y.-S. Yu, F. Wang, J. Cabana, J. Wang, S. Jin, Nat. Commun. 2015, 6, 6883.
- 117L. Li, R. Jacobs, P. Gao, L. Gan, F. Wang, D. Morgan, S. Jin, J. Am. Chem. Soc. 2016, 138, 2838–2848.
- 118S.-K. Jung, H. Kim, M. G. Cho, S.-P. Cho, B. Lee, H. Kim, Y.-U. Park, J. Hong, K.-Y. Park, G. Yoon, et al., Nat. Energy 2017, 2, 16208.
- 119D. Mori, H. Kobayashi, M. Shikano, H. Nitani, H. Kageyama, S. Koike, H. Sakaebe, K. Tatsumi, J. Power Sources 2009, 189, 676–680.
- 120S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Adv. Energy Mater. 2014, 4, 1300787.
- 121D. P. Abraham, R. D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, K. Amine, Electrochem. commun. 2002, 4, 620–625.
- 122H. Kobayashi, M. Shikano, S. Koike, H. Sakaebe, K. Tatsumi, J. Power Sources 2007, 174, 380–386.
- 123M. Shikano, H. Kobayashi, S. Koike, H. Sakaebe, E. Ikenaga, K. Kobayashi, K. Tatsumi, J. Power Sources 2007, 174, 795–799.
- 124H. Zheng, Q. Sun, G. Liu, X. Song, V. S. Battaglia, J. Power Sources 2012, 207, 134–140.
- 125C. H. Lei, J. Bareño, J. G. Wen, I. Petrov, S.-H. Kang, D. P. Abraham, J. Power Sources 2008, 178, 422–433.
- 126N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai, S. Komaba, J. Am. Chem. Soc. 2011, 133, 4404–4419.
- 127S. Hy, F. Felix, J. Rick, W.-N. Su, B. J. Hwang, J. Am. Chem. Soc. 2014, 136, 999–1007.
- 128J. Hong, H.-D. Lim, M. Lee, S.-W. Kim, H. Kim, S.-T. Oh, G.-C. Chung, K. Kang, Chem. Mater. 2012, 24, 2692–2697.
- 129N. Tran, L. Croguennec, M. Ménétrier, F. Weill, P. Biensan, C. Jordy, C. Delmas, Chem. Mater. 2008, 20, 4815–4825.
- 130D. Mohanty, A. S. Sefat, J. Li, R. A. Meisner, A. J. Rondinone, E. A. Payzant, D. P. Abraham, D. L. Wood III, C. Daniel, Phys. Chem. Chem. Phys. 2013, 15, 19496.
- 131A. Ito, Y. Sato, T. Sanada, M. Hatano, H. Horie, Y. Ohsawa, J. Power Sources 2011, 196, 6828–6834.
- 132M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, J.-G. Zhang, et al., ACS Nano 2013, 7, 760–767.
- 133A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang, T. A. Wynn, B. Qiu, Y. Xia, Z. Liu, A. Ulvestad, et al., Nat. Energy 2018, 3, 641–647.
- 134N. P. W. Pieczonka, Z. Liu, P. Lu, K. L. Olson, J. Moote, B. R. Powell, J.-H. Kim, J. Phys. Chem. C 2013, 117, 15947–15957.
- 135T. Yoon, S. Park, J. Mun, J. H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, S. M. Oh, J. Power Sources 2012, 215, 312–316.
- 136W. Choi, A. Manthiram, J. Electrochem. Soc. 2006, 153, A 1760.
- 137D. Aurbach, B. Markovsky, Y. Talyossef, G. Salitra, H.-J. Kim, S. Choi, J. Power Sources 2006, 162, 780–789.
- 138J.-H. Kim, C. S. Yoon, S.-T. Myung, J. Prakash, Y.-K. Sun, Electrochem. Solid-State Lett. 2004, 7, A 216.
- 139M. Lin, L. Ben, Y. Sun, H. Wang, Z. Yang, L. Gu, X. Yu, X.-Q. Yang, H. Zhao, R. Yu, et al., Chem. Mater. 2015, 27, 292–303.
- 140J. Kang, V. Mathew, J. Gim, S. Kim, J. Song, W. Bin Im, J. Han, J. Y. Lee, J. Kim, Sci. Rep. 2014, 4, 4047.
- 141H. Huang, S.-C. Yin, T. Kerr, N. Taylor, L. F. Nazar, Adv. Mater. 2002, 14, 1525–1528.
- 142L. Wang, J. Xu, C. Wang, X. Cui, J. Li, Y.-N. Zhou, RSC Adv. 2015, 5, 71684–71691.
- 143K. Amine, J. Liu, I. Belharouak, Electrochem. Commun. 2005, 7, 669–673.
- 144M.-S. Song, Y.-M. Kang, Y.-I. Kim, K.-S. Park, H.-S. Kwon, Inorg. Chem. 2009, 48, 8271–8275.
- 145M. Dubarry, B. Y. Liaw, J. Power Sources 2009, 194, 541–549.
- 146K. Striebel, J. Shim, A. Sierra, H. Yang, X. Song, R. Kostecki, K. McCarthy, J. Power Sources 2005, 146, 33–38.
- 147L. Castro, R. Dedryvère, J.-B. Ledeuil, J. Bréger, C. Tessier, D. Gonbeau, J. Electrochem. Soc. 2012, 159, A 357–A363.
- 148K.-S. Park, D. Im, A. Benayad, A. Dylla, K. J. Stevenson, J. B. Goodenough, Chem. Mater. 2012, 24, 2673–2683.
- 149P. Liu, J. J. Vajo, J. S. Wang, W. Li, J. Liu, J. Phys. Chem. C 2012, 116, 6467–6473.
- 150X. Hua, R. Robert, L.-S. Du, K. M. Wiaderek, M. Leskes, K. W. Chapman, P. J. Chupas, C. P. Grey, J. Phys. Chem. C 2014, 118, 15169–15184.
- 151G. G. Amatucci, N. Pereira, J. Fluorine Chem. 2007, 128, 243–262.
- 152F. Wang, R. Robert, N. A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, et al., J. Am. Chem. Soc. 2011, 133, 18828–18836.
- 153S. Ferrari, M. C. Mozzati, M. Lantieri, G. Spina, D. Capsoni, M. Bini, Sci. Rep. 2016, 6, 27896.
- 154Y. H. Jung, W. B. Park, M. Pyo, K.-S. Sohn, D. Ahn, J. Mater. Chem. A 2017, 5, 8939–8945.
- 155S. S. Fedotov, N. R. Khasanova, A. S. Samarin, O. A. Drozhzhin, D. Batuk, O. M. Karakulina, J. Hadermann, A. M. Abakumov, E. V. Antipov, Chem. Mater. 2016, 28, 411–415.
- 156L. Qu, D. Luo, S. Fang, Y. Liu, L. Yang, S. Hirano, C.-C. Yang, J. Power Sources 2016, 307, 69–76.
- 157D. Ai, K. Liu, Z. Lu, M. Zou, D. Zeng, J. Ma, Electrochim. Acta 2011, 56, 2823–2827.
- 158D.-W. Han, S.-J. Lim, Y.-I. Kim, S. H. Kang, Y. C. Lee, Y.-M. Kang, Chem. Mater. 2014, 26, 3644–3650.
- 159F. Lu, Y. Zhou, J. Liu, Y. Pan, Electrochim. Acta 2011, 56, 8833–8838.
- 160R. Kanno, H. Kubo, Y. Kawamoto, T. Kamiyama, F. Izumi, Y. Takeda, M. Takano, J. Solid State Chem. 1994, 110, 216–225.
- 161C. Delmas, I. Saadoune, A. Rougier, J. Power Sources 1993, 44, 595–602.
- 162E. Zhecheva, R. Stoyanova, Solid State Ionics 1993, 66, 143–149.
- 163S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, Nat. Mater. 2002, 1, 123–128.
- 164J. Reed, G. Ceder, Electrochem. Solid-State Lett. 2002, 5, A 145.
- 165G. Ceder, Y.-M. Chiang, D. R. Sadoway, M. K. Aydinol, Y.-I. Jang, B. Huang, Nature 1998, 392, 694–696.
- 166A. Gutierrez, N. A. Benedek, A. Manthiram, Chem. Mater. 2013, 25, 4010–4016.
- 167C. Pouillerie, L. Croguennec, P. Biensan, P. Willmann, C. Delmas, J. Electrochem. Soc. 2000, 147, 2061.
- 168K. Kang, G. Ceder, Phys. Rev. B 2006, 74, 094105.
- 169H. Arai, S. Okada, Y. Sakurai, J. Yamaki, J. Power Sources 1997, 68, 716–719.
- 170L. Croguennec, E. Suard, P. Willmann, C. Delmas, Chem. Mater. 2002, 14, 2149–2157.
- 171Y.-M. Kang, Y.-I. Kim, M.-W. Oh, R.-Z. Yin, Y. Lee, D.-W. Han, H.-S. Kwon, J. H. Kim, G. Ramanath, Energy Environ. Sci. 2011, 4, 4978.
- 172C. X. Ding, Y. C. Bai, X. Y. Feng, C. H. Chen, Solid State Ionics 2011, 189, 69–73.
- 173E. Levi, M. D. Levi, G. Salitra, D. Aurbach, R. Oesten, U. Heider, L. Heider, Solid State Ionics 1999, 126, 97–108.
- 174O. Sha, Z. Qiao, S. Wang, Z. Tang, H. Wang, X. Zhang, Q. Xu, Mater. Res. Bull. 2013, 48, 1606–1611.
- 175T. A. Arunkumar, A. Manthiram, Electrochem. Solid-State Lett. 2005, 8, A 403.
- 176Z. Yang, Y. Jiang, J.-H. Kim, Y. Wu, G.-L. Li, Y.-H. Huang, Electrochim. Acta 2014, 117, 76–83.
- 177M. N. Ates, Q. Jia, A. Shah, A. Busnaina, S. Mukerjee, K. M. Abraham, J. Electrochem. Soc. 2014, 161, A 290–A301.
- 178Z. Chen, Y. Qin, K. Amine, Y.-K. Sun, J. Mater. Chem. 2010, 20, 7606.
- 179M. Tabuchi, Y. Nabeshima, T. Takeuchi, H. Kageyama, K. Tatsumi, J. Akimoto, H. Shibuya, J. Imaizumi, J. Power Sources 2011, 196, 3611–3622.
- 180M. Tabuchi, Y. Nabeshima, T. Takeuchi, H. Kageyama, J. Imaizumi, H. Shibuya, J. Akimoto, J. Power Sources 2013, 221, 427–434.
- 181Z. Tang, Z. Wang, X. Li, W. Peng, J. Power Sources 2012, 204, 187–192.
- 182J.-H. Kim, C. W. Park, Y.-K. Sun, Solid State Ionics 2003, 164, 43–49.
- 183O. Sha, Z. Tang, S. Wang, W. Yuan, Z. Qiao, Q. Xu, L. Ma, Electrochim. Acta 2012, 77, 250–255.
- 184B. Song, M. O. Lai, L. Lu, Electrochim. Acta 2012, 80, 187–195.
- 185L. F. Jiao, M. Zhang, H. T. Yuan, M. Zhao, J. Guo, W. Wang, X. Di Zhou, Y. M. Wang, J. Power Sources 2007, 167, 178–184.
- 186Q. Liu, K. Du, G. Hu, Z. Peng, Y. Cao, W. Liu, Solid State Ionics 2012, 227, 23–29.
- 187J. Wang, W. Lin, B. Wu, J. Zhao, Electrochim. Acta 2014, 145, 245–253.
- 188R. Alcántara, M. Jaraba, P. Lavela, J. L. Tirado, E. Zhecheva, R. Stoyanova, Chem. Mater. 2004, 16, 1573–1579.
- 189M.-C. Yang, B. Xu, J.-H. Cheng, C.-J. Pan, B.-J. Hwang, Y. S. Meng, Chem. Mater. 2011, 23, 2832–2841.
- 190S. Hy, J.-H. Cheng, J.-Y. Liu, C.-J. Pan, J. Rick, J.-F. Lee, J.-M. Chen, B. J. Hwang, Chem. Mater. 2014, 26, 6919–6927.
- 191R. Alcántara, M. Jaraba, P. Lavela, J. M. Lloris, C. Pérez Vicente, J. L. Tirado, J. Electrochem. Soc. 2005, 152, A 13.
- 192G. B. Zhong, Y. Y. Wang, Y. Q. Yu, C. H. Chen, J. Power Sources 2012, 205, 385–393.
- 193C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard, M. Tournoux, Solid State Ionics 1995, 81, 167–170.
- 194M. C. Kim, K.-W. Nam, E. Hu, X.-Q. Yang, H. Kim, K. Kang, V. Aravindan, W.-S. Kim, Y.-S. Lee, ChemSusChem 2014, 7, 829–834.
- 195N. Yabuuchi, Chem. Rec. 2019, 19, 690–707.
- 196N. Yabuuchi, M. Nakayama, M. Takeuchi, S. Komaba, Y. Hashimoto, T. Mukai, H. Shiiba, K. Sato, Y. Kobayashi, A. Nakao, et al., Nat. Commun. 2016, 7, 13814.
- 197J. Lee, J. K. Papp, R. J. Clément, S. Sallis, D.-H. Kwon, T. Shi, W. Yang, B. D. McCloskey, G. Ceder, Nat. Commun. 2017, 8, 981.
- 198R. A. House, L. Jin, U. Maitra, K. Tsuruta, J. W. Somerville, D. P. Förstermann, F. Massel, L. Duda, M. R. Roberts, P. G. Bruce, Energy Environ. Sci. 2018, 11, 926–932.
- 199W. D. Richards, S. T. Dacek, D. A. Kitchaev, G. Ceder, Adv. Energy Mater. 2018, 8, 1701533.
- 200N. Takeda, S. Hoshino, L. Xie, S. Chen, I. Ikeuchi, R. Natsui, K. Nakura, N. Yabuuchi, J. Power Sources 2017, 367, 122–129.
- 201S. Ren, R. Chen, E. Maawad, O. Dolotko, A. A. Guda, V. Shapovalov, D. Wang, H. Hahn, M. Fichtner, Adv. Sci. 2015, 2, 1500128.
- 202M. R. Jo, Y.-I. Kim, Y. Kim, J. S. Chae, K. C. Roh, W.-S. Yoon, Y.-M. Kang, ChemSusChem 2014, 7, 2248–2254.
- 203S. H. Min, M. R. Jo, S.-Y. Choi, Y.-I. Kim, Y.-M. Kang, Adv. Energy Mater. 2016, 6, 1501717.
- 204J. Xiang, C. Chang, L. Yuan, J. Sun, Electrochem. Commun. 2008, 10, 1360–1363.
- 205H.-J. Kweon, S. J. Kim, D. G. Park, J. Power Sources 2000, 88, 255–261.
- 206H. Omanda, T. Brousse, C. Marhic, D. M. Schleich, J. Electrochem. Soc. 2004, 151, A 922.
- 207F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, J. Power Sources 2009, 191, 628–632.
- 208Y. Huang, J. Chen, J. Ni, H. Zhou, X. Zhang, J. Power Sources 2009, 188, 538–545.
- 209L. Tan, H. Liu, Russ. J. Electrochem. 2011, 47, 156–160.
- 210B. Park, H. Kim, H. J. Bang, J. Prakash, Y. Sun, Ind. Eng. Chem. Res. 2008, 47, 3876–3882.
- 211J. Cho, T.-J. Kim, J. Kim, M. Noh, B. Park, J. Electrochem. Soc. 2004, 151, A 1899.
- 212S. B. Jang, S.-H. Kang, K. Amine, Y. C. Bae, Y.-K. Sun, Electrochim. Acta 2005, 50, 4168–4173.
- 213X. Xiong, Z. Wang, X. Yin, H. Guo, X. Li, Mater. Lett. 2013, 110, 4–9.
- 214J. Wang, X. Zhang, J. Liu, G. Yang, Y. Ge, Z. Yu, R. Wang, X. Pan, Electrochim. Acta 2010, 55, 6879–6884.
- 215L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J. B. Goodenough, Energy Environ. Sci. 2011, 4, 269–284.
- 216Y. Wang, R. Mei, X. Yang, Ceram. Int. 2014, 40, 8439–8444.
- 217S. Yoon, C. Liao, X.-G. Sun, C. A. Bridges, R. R. Unocic, J. Nanda, S. Dai, M. P. Paranthaman, J. Mater. Chem. 2012, 22, 4611.
- 218J. Yang, J. Wang, X. Li, D. Wang, J. Liu, G. Liang, M. Gauthier, Y. Li, D. Geng, R. Li, et al., J. Mater. Chem. 2012, 22, 7537.
- 219C. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, J. Am. Chem. Soc. 2011, 133, 2132–2135.
- 220H. Ni, J. Liu, L.-Z. Fan, Nanoscale 2013, 5, 2164.
- 221X. Fang, M. Ge, J. Rong, C. Zhou, ACS Nano 2014, 8, 4876–4882.
- 222J. Arrebola, A. Caballero, L. Hernán, J. Morales, E. Rodríguez Castellón, J. R. Ramos Barrado, J. Electrochem. Soc. 2007, 154, A 178.
- 223L. Xiong, W. Liu, Y. Wu, Z. He, Appl. Surf. Sci. 2015, 328, 531–535.
- 224H. Sclar, O. Haik, T. Menachem, J. Grinblat, N. Leifer, A. Meitav, S. Luski, D. Aurbach, J. Electrochem. Soc. 2012, 159, A 228–A237.
- 225J. C. Arrebola, A. Caballero, L. Hernán, J. Morales, J. Power Sources 2010, 195, 4278–4284.
- 226J. S. Chae, S.-B. Yoon, W.-S. Yoon, Y.-M. Kang, S.-M. Park, J.-W. Lee, K. C. Roh, J. Alloys Compd. 2014, 601, 217–222.
- 227X. Yang, T. Yang, S. Liang, X. Wu, H. Zhang, J. Mater. Chem. A 2014, 2, 10359–10364.
- 228N. Zhang, T. Yang, Y. Lang, K. Sun, J. Alloys Compd. 2011, 509, 3783–3786.
- 229X. Fang, M. Ge, J. Rong, C. Zhou, J. Mater. Chem. A 2013, 1, 4083.
- 230J. Li, Y. Zhang, J. Li, L. Wang, X. He, J. Gao, Ionics 2011, 17, 671–675.
- 231Q. Wu, Y. Yin, S. Sun, X. Zhang, N. Wan, Y. Bai, Electrochim. Acta 2015, 158, 73–80.
- 232J. Chong, S. Xun, J. Zhang, X. Song, H. Xie, V. Battaglia, R. Wang, Chem. Eur. J. 2014, 20, 7479–7485.
- 233J. Chong, S. Xun, X. Song, G. Liu, V. S. Battaglia, Nano Energy 2013, 2, 283–293.
- 234H. Huang, S.-C. Yin, L. F. Nazar, Electrochem. Solid-State Lett. 2001, 4, A 170.
- 235C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Electrochem. Solid-State Lett. 2006, 9, A 352.
- 236R. Malik, D. Burch, M. Bazant, G. Ceder, Nano Lett. 2010, 10, 4123–4127.
- 237J. C. Kim, D.-H. Seo, H. Chen, G. Ceder, Adv. Energy Mater. 2015, 5, 1401916.
- 238J. Shin, J. Yang, C. Sergey, M.-S. Song, Y.-M. Kang, Adv. Sci. 2017, 4, 1700128.
- 239F. Wang, H.-C. Yu, M.-H. Chen, L. Wu, N. Pereira, K. Thornton, A. Van der Ven, Y. Zhu, G. G. Amatucci, J. Graetz, Nat. Commun. 2012, 3, 1201.
- 240T. Li, Z. X. Chen, Y. L. Cao, X. P. Ai, H. X. Yang, Electrochim. Acta 2012, 68, 202–205.
- 241J. Geder, H. E. Hoster, A. Jossen, J. Garche, D. Y. W. Yu, J. Power Sources 2014, 257, 286–292.
- 242M. M. Shaijumon, E. Perre, B. Daffos, P.-L. Taberna, J.-M. Tarascon, P. Simon, Adv. Mater. 2010, 22, 4978–4981.
- 243T. S. Arthur, D. J. Bates, N. Cirigliano, D. C. Johnson, P. Malati, J. M. Mosby, E. Perre, M. T. Rawls, A. L. Prieto, B. Dunn, MRS Bull. 2011, 36, 523–531.
- 244J. Li, M. C. Leu, R. Panat, J. Park, Mater. Des. 2017, 119, 417–424.
- 245J. Li, Y. Gao, X. Liang, J. Park, Batteries Supercaps 2019, 2, 139–143.
- 246X. Fan, C. Luo, J. Lamb, Y. Zhu, K. Xu, C. Wang, Nano Lett. 2015, 15, 7650–7656.
- 247D. Ma, Z. Cao, H. Wang, X. Huang, L. Wang, X. Zhang, Energy Environ. Sci. 2012, 5, 8538.
- 248C. Li, X. Mu, P. A. van Aken, J. Maier, Adv. Energy Mater. 2013, 3, 113–119.
- 249J. Liu, W. Liu, S. Ji, Y. Wan, M. Gu, H. Yin, Y. Zhou, Chem. Eur. J. 2014, 20, 5815–5820.
- 250B. Hai, A. K. Shukla, H. Duncan, G. Chen, J. Mater. Chem. A 2013, 1, 759–769.
- 251Z. Chen, R. Zhao, P. Du, H. Hu, T. Wang, L. Zhu, H. Chen, J. Mater. Chem. A 2014, 2, 12835–12848.
- 252S. Kuppan, H. Duncan, G. Chen, Phys. Chem. Chem. Phys. 2015, 17, 26471–26481.
- 253S. Kuppan, Y. Xu, Y. Liu, G. Chen, Nat. Commun. 2017, 8, 14309.
- 254H. Liu, J. Wang, X. Zhang, D. Zhou, X. Qi, B. Qiu, J. Fang, R. Kloepsch, G. Schumacher, Z. Liu, et al., ACS Appl. Mater. Interfaces 2016, 8, 4661–4675.
- 255M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J. Mizuki, R. Kanno, J. Am. Chem. Soc. 2010, 132, 15268–15276.
- 256K. R. Chemelewski, D. W. Shin, W. Li, A. Manthiram, J. Mater. Chem. A 2013, 1, 3347.
- 257K. R. Chemelewski, E.-S. Lee, W. Li, A. Manthiram, Chem. Mater. 2013, 25, 2890–2897.
- 258T. Maiyalagan, K. R. Chemelewski, A. Manthiram, ACS Catal. 2014, 4, 421–425.
- 259M. Nakajima, N. Yabuuchi, Chem. Mater. 2017, 29, 6927–6935.
- 260J. R. Croy, M. Balasubramanian, K. G. Gallagher, A. K. Burrell, Acc. Chem. Res. 2015, 48, 2813–2821.
- 261M. Sathiya, A. M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubanère, M. L. Doublet, H. Vezin, C. P. Laisa, A. S. Prakash, et al., Nat. Mater. 2015, 14, 230–238.
- 262P. E. Pearce, A. J. Perez, G. Rousse, M. Saubanère, D. Batuk, D. Foix, E. McCalla, A. M. Abakumov, G. Van Tendeloo, M.-L. Doublet, et al., Nat. Mater. 2017, 16, 580–586.
- 263Y. Kim, J. Yoo, D. Jang, S. Muhammad, M. Jeong, W. Choi, W.-S. Yoon, J. Mater. Chem. A 2018, 6, 13743–13750.
- 264S. Choi, J. Yoon, S. Muhammad, W. Yoon, J. Electrochem. Sci. Technol. 2013, 4, 34–40.
- 265M. Kunduraci, G. G. Amatucci, J. Electrochem. Soc. 2006, 153, A 1345–A1352.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.