A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode
Dr. Hongcai Gao
Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorDr. Leigang Xue
Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorDr. Sen Xin
Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorCorresponding Author
Prof. John B. Goodenough
Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorDr. Hongcai Gao
Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorDr. Leigang Xue
Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorDr. Sen Xin
Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorCorresponding Author
Prof. John B. Goodenough
Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712 USA
Search for more papers by this authorAbstract
A safe, rechargeable potassium battery of high energy density and excellent cycling stability has been developed. The anion component of the electrolyte salt is inserted into a polyaniline cathode upon charging and extracted from it during discharging while the K+ ion of the KPF6 salt is plated/stripped on the potassium-metal anode. The use of a p-type polymer cathode increases the cell voltage. By replacing the organic-liquid electrolyte in a glass-fiber separator with a polymer-gel electrolyte of cross-linked poly(methyl methacrylate), a dendrite-free potassium anode can be plated/stripped, and the electrode/electrolyte interface is stabilized. The potassium anode wets the polymer, and the cross-linked architecture provides small pores of adjustable sizes to stabilize a solid-electrolyte interphase formed at the anode/electrolyte interface. This alternative electrolyte/cathode strategy offers a promising new approach to low-cost potassium batteries for the stationary storage of electric power.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201802248-sup-0001-misc_information.pdf468.2 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. B. Goodenough, Acc. Chem. Res. 2013, 46, 1053–1061.
- 2D. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19–29.
- 3Q. Zhao, J. B. Wang, Y. Lu, Y. X. Li, G. X. Liang, J. Chen, Angew. Chem. Int. Ed. 2016, 55, 12528–12532; Angew. Chem. 2016, 128, 12716–12720.
- 4B. F. Ji, F. Zhang, X. H. Song, Y. B. Tang, Adv. Mater. 2017, 29, 1700519.
- 5Y. H. Zhu, Y. B. Yin, X. Yang, T. Sun, S. Wang, Y. S. Jiang, J. M. Yan, X. B. Zhang, Angew. Chem. Int. Ed. 2017, 56, 7881–7885; Angew. Chem. 2017, 129, 7989–7993.
- 6A. Eftekhari, Z. L. Jian, X. L. Ji, ACS Appl. Mater. Interfaces 2017, 9, 4404–4419.
- 7J. C. Pramudita, D. Sehrawat, D. Goonetilleke, N. Sharma, Adv. Energy Mater. 2017, 7, 1602911.
- 8X. X. Zou, P. X. Xiong, J. Zhao, J. M. Hu, Z. T. Liu, Y. H. Xu, Phys. Chem. Chem. Phys. 2017, 19, 26495–26506.
- 9Y. L. Liang, Z. L. Tao, J. Chen, Adv. Energy Mater. 2012, 2, 742–769.
- 10Z. P. Song, H. S. Zhou, Energy Environ. Sci. 2013, 6, 2280–2301.
- 11L. M. Zhu, Y. F. Shen, M. Y. Sun, J. F. Qian, Y. L. Cao, X. P. Ai, H. X. Yang, Chem. Commun. 2013, 49, 11370–11372.
- 12F. Y. Cheng, W. Tang, C. S. Li, J. Chen, H. K. Liu, P. W. Shen, S. X. Dou, Chem. Eur. J. 2006, 12, 3082–3088.
- 13L. Qie, L. X. Yuan, W. X. Zhang, W. M. Chen, Y. H. Huang, J. Electrochem. Soc. 2012, 159, A 1624–A1629.
- 14J. B. Goodenough, P. Singh, J. Electrochem. Soc. 2015, 162, A 2387–A2392.
- 15N. Xiao, W. D. McCulloch, Y. Y. Wu, J. Am. Chem. Soc. 2017, 139, 9475–9478.
- 16H. C. Gao, L. G. Xue, S. Xin, K. Park, J. B. Goodenough, Angew. Chem. Int. Ed. 2017, 56, 5541–5545; Angew. Chem. 2017, 129, 5633–5637.
- 17W. Zheng, M. Angelopoulos, A. J. Epstein, A. G. MacDiarmid, Macromolecules 1997, 30, 7634–7637.
- 18M. Trchová, Z. Moravkova, M. Blaha, J. Stejskal, Electrochim. Acta 2014, 122, 28–38.
- 19H. C. Gao, W. D. Zhou, K. Park, J. B. Goodenough, Adv. Energy Mater. 2016, 6, 1600467.
- 20X. Y. Wu, D. P. Leonard, X. L. Ji, Chem. Mater. 2017, 29, 5031–5042.
- 21N. K. Jyothi, K. K. Venkataratnam, P. N. Murty, K. V. Kumar, Bull. Mater. Sci. 2016, 39, 1047–1055.
- 22M. Rosso, C. Brissot, A. Teyssot, M. Dolle, L. Sannier, J. M. Tarascon, R. Bouchetc, S. Lascaud, Electrochim. Acta 2006, 51, 5334–5340.
- 23P. Novák, K. Muller, K. S. V. Santhanam, O. Haas, Chem. Rev. 1997, 97, 207–281.
- 24X. P. Wang, X. M. Xu, C. J. Niu, J. S. Meng, M. Huang, X. Liu, Z. Liu, L. Q. Mai, Nano Lett. 2017, 17, 544–550.
- 25Z. L. Jian, Y. L. Liang, I. A. Rodriguez-Perez, Y. Yao, X. L. Ji, Electrochem. Commun. 2016, 71, 5–8.
- 26J. Han, Y. B. Niu, S. J. Bao, Y. N. Yu, S. Y. Lu, M. W. Xu, Chem. Commun. 2016, 52, 11661–11664.
- 27Y. N. Chen, W. Luo, M. Carter, L. H. Zhou, J. Q. Dai, K. Fu, S. Lacey, T. Li, J. Y. Wan, X. G. Han, Y. P. Bao, L. B. Hu, Nano Energy 2015, 18, 205–211.
- 28C. Vaalma, G. A. Giffin, D. Buchholz, S. Passerini, J. Electrochem. Soc. 2016, 163, A 1295–A1299.
- 29X. F. Bie, K. Kubota, T. Hosaka, K. Chihara, S. Komaba, J. Mater. Chem. A 2017, 5, 4325–4330.
- 30L. G. Xue, Y. T. Li, H. C. Gao, W. D. Zhou, X. J. Lu, W. Kaveevivitchai, A. Manthiram, J. B. Goodenough, J. Am. Chem. Soc. 2017, 139, 2164–2167.
- 31A. Eftekhari, J. Power Sources 2004, 126, 221–228.
- 32X. Y. Wu, Z. L. Jian, Z. F. Li, X. L. Ji, Electrochem. Commun. 2017, 77, 54–57.
- 33Z. Y. Xing, Z. L. Jian, W. Luo, Y. T. Qi, C. Bommier, E. S. Chong, Z. F. Li, L. B. Hu, X. L. Ji, Energy Storage Mater. 2016, 2, 63–68.
- 34J. Han, G. N. Li, F. Liu, M. Q. Wang, Y. Zhang, L. Y. Hu, C. L. Dai, M. W. Xu, Chem. Commun. 2017, 53, 1805–1808.
- 35T. Deng, X. Fan, C. Luo, J. Chen, L. Chen, S. Hou, N. Eidson, X. Zhou, C. Wang, Nano Lett. 2018, 18, 1522–1529.
- 36W. B. Park, S. C. Han, C. Park, S. U. Hong, U. Han, S. P. Singh, Y. H. Jung, D. Ahn, K. S. Sohn, M. Pyo, Adv. Energy Mater. 2017, 7, 1703099.
- 37C. L. Liu, S. H. Luo, H. B. Huang, Z. Y. Wang, A. M. Hao, Y. C. Zhai, Z. W. Wang, Electrochem. Commun. 2017, 82, 150–154.
- 38C. L. Zhang, Y. Xu, M. Zhou, L. Y. Liang, H. S. Dong, M. H. Wu, Y. Yang, Y. Lei, Adv. Funct. Mater. 2017, 27, 1604307.
- 39J. Zhao, J. X. Yang, P. F. Sun, Y. H. Xu, Electrochem. Commun. 2018, 86, 34–37.
- 40V. A. Nikitina, S. M. Kuzovchikov, S. S. Fedotov, N. R. Khasanova, A. M. Abakumov, E. V. Antipov, Electrochim. Acta 2017, 258, 814–824.
- 41L. P. Wang, J. Zou, S. L. Chen, G. Zhou, J. M. Bai, P. Gao, Y. S. Wang, X. Q. Yu, J. Z. Li, Y. S. Hu, H. Li, Energy Storage Mater. 2018, 12, 216–222.
- 42P. L. Kuo, C. A. Wu, C. Y. Lu, C. H. Tsao, C. H. Hsu, S. S. Hou, ACS Appl. Mater. Interfaces 2014, 6, 3156–3162.
- 43D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, Electrochim. Acta 1999, 45, 67–86.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.