Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes
Xue-Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiang Chen
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Xin-Bing Cheng
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorBo-Quan Li
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXin Shen
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorChong Yan
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorProf. Jia-Qi Huang
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXue-Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXiang Chen
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorDr. Xin-Bing Cheng
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorBo-Quan Li
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorXin Shen
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorChong Yan
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorProf. Jia-Qi Huang
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P. R. China
Search for more papers by this authorAbstract
Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO3) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiNxOy on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201801513-sup-0001-misc_information.pdf1.7 MB | Supplementary |
ange201801513-sup-0001-Movie_S1.mp412 MB | Supplementary |
ange201801513-sup-0001-Movie_S2.mp410 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J. M. Tarascon, Nature 2008, 451, 652; N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, P. G. Bruce, Angew. Chem. Int. Ed. 2012, 51, 9994; Angew. Chem. 2012, 124, 10134.
- 2D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.
- 3J. B. Goodenough, Y. Kim, Chem. Mater. 2010, 22, 587; D. Aurbach, J. Power Sources 2000, 89, 206.
- 4K. Xu, Chem. Rev. 2014, 114, 11503.
- 5W. Xu, J. L. Wang, F. Ding, X. L. Chen, E. Nasybutin, Y. H. Zhang, J. G. Zhang, Energy Environ. Sci. 2014, 7, 513.
- 6X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.
- 7Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt, Y. Cui, Adv. Mater. 2017, 29, 1605531; N. W. Li, Y. Shi, Y. X. Yin, X. X. Zeng, J. Y. Li, C. J. Li, L. J. Wan, R. Wen, Y. G. Guo, Angew. Chem. Int. Ed. 2018, 57, 1505; Angew. Chem. 2018, 130, 1521; X.-B. Cheng, C. Yan, X. Chen, C. Guan, J.-Q. Huang, H.-J. Peng, R. Zhang, S.-T. Yang, Q. Zhang, Chem 2017, 2, 258; Q. Pang, X. Liang, C. Y. Kwok, L. F. Nazar, Nat. Energy 2016, 1, 16132.
- 8R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J. P. Bonnet, T. N. T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Nat. Mater. 2013, 12, 452; J. Zhang, N. Zhao, M. Zhang, Y. Li, P. K. Chu, X. Guo, Z. Di, X. Wang, H. Li, Nano Energy 2016, 28, 447; K. Fu, Y. Gong, Z. Fu, H. Xie, Y. Yao, B. Liu, M. Carter, E. Wachsman, L. Hu, Angew. Chem. Int. Ed. 2017, 56, 14942; Angew. Chem. 2017, 129, 15138; C. Z. Zhao, X. Q. Zhang, X. B. Cheng, R. Zhang, R. Xu, P. Y. Chen, H. J. Peng, J. Q. Huang, Q. Zhang, Proc. Natl. Acad. Sci. USA 2017, 114, 11069.
- 9L. Suo, W. Xue, M. Gobet, S. G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li, J. Li, Proc. Natl. Acad. Sci. USA 2018, 115, 1156.
- 10Y. Yamada, A. Yamada, J. Electrochem. Soc. 2015, 162, A 2406; J. Zheng, J. A. Lochala, A. Kwok, Z. D. Deng, J. Xiao, Adv. Sci. 2017, 4, 1700032; L. Wang, Y. Ma, Y. Qu, X. Cheng, P. Zuo, C. Du, Y. Gao, G. Yin, Electrochim. Acta 2016, 191, 8.
- 11J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012; F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J. G. Zhang, J. Am. Chem. Soc. 2013, 135, 4450; J. Xia, R. Petibon, A. Xiao, W. M. Lamanna, J. R. Dahn, J. Electrochem. Soc. 2016, 163, A 1637.
- 12X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.
- 13Y. Lu, S. K. Das, S. S. Moganty, L. A. Archer, Adv. Mater. 2012, 24, 4430; N. Chen, Y. J. Dai, Y. Xing, L. L. Wang, C. Guo, R. J. Chen, S. J. Guo, F. Wu, Energy Environ. Sci. 2017, 10, 1660; D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, C. A. Angell, Energy Environ. Sci. 2014, 7, 232.
- 14T. T. Zuo, X. W. Wu, C. P. Yang, Y. X. Yin, H. Ye, N. W. Li, Y. G. Guo, Adv. Mater. 2017, 29, 1700389; R. Zhang, X. R. Chen, X. Chen, X. B. Cheng, X. Q. Zhang, C. Yan, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 7764; Angew. Chem. 2017, 129, 7872; Q. Lu, Y. B. He, Q. Yu, B. Li, Y. V. Kaneti, Y. Yao, F. Kang, Q. H. Yang, Adv. Mater. 2017, 29, 1604460.
- 15K. Xu, J. Electrochem. Soc. 2007, 154, A 162.
- 16K. Ueno, R. Tatara, S. Tsuzuki, S. Saito, H. Doi, K. Yoshida, T. Mandai, M. Matsugami, Y. Umebayashi, K. Dokko, M. Watanabe, Phys. Chem. Chem. Phys. 2015, 17, 8248; A. von Wald Cresce, K. Xu, Electrochem. Solid-State Lett. 2011, 14, A 154.
- 17A. V. Cresce, O. Borodin, K. Xu, J. Phys. Chem. C 2012, 116, 26111.
- 18E. Markevich, G. Salitra, F. Chesneau, M. Schmidt, D. Aurbach, ACS Energy Lett. 2017, 2, 1321.
- 19D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, J. Affinito, J. Electrochem. Soc. 2009, 156, A 694.
- 20S. Xiong, K. Xie, Y. Diao, X. Hong, Electrochim. Acta 2012, 83, 78.
- 21Y. Lu, Z. Tu, L. A. Archer, Nat. Mater. 2014, 13, 961.
- 22X. Q. Zhang, X. Chen, R. Xu, X. B. Cheng, H. J. Peng, R. Zhang, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 14207; Angew. Chem. 2017, 129, 14395; X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, C. Wang, Chem 2018, 4, 174; Q. Zhang, J. Pan, P. Lu, Z. Liu, M. W. Verbrugge, B. W. Sheldon, Y.-T. Cheng, Y. Qi, X. Xiao, Nano Lett. 2016, 16, 2011.
- 23T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, J. Electrochem. Soc. 2004, 151, A 1120; K. Xu, Y. Lam, S. S. Zhang, T. R. Jow, T. B. Curtis, J. Phys. Chem. C 2007, 111, 7411.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.