Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct α-Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis
Jack Twilton
Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544 USA
Search for more papers by this authorMelodie Christensen
Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065 USA
Search for more papers by this authorDr. Daniel A. DiRocco
Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065 USA
Search for more papers by this authorDr. Rebecca T. Ruck
Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065 USA
Search for more papers by this authorDr. Ian W. Davies
Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. David W. C. MacMillan
Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544 USA
Search for more papers by this authorJack Twilton
Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544 USA
Search for more papers by this authorMelodie Christensen
Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065 USA
Search for more papers by this authorDr. Daniel A. DiRocco
Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065 USA
Search for more papers by this authorDr. Rebecca T. Ruck
Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065 USA
Search for more papers by this authorDr. Ian W. Davies
Process Research and Development, MRL, Merck Sharp & Dohme Corp., Rahway, NJ, 07065 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. David W. C. MacMillan
Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544 USA
Search for more papers by this authorAbstract
The combination of nickel metallaphotoredox catalysis, hydrogen atom transfer catalysis, and a Lewis acid activation mode, has led to the development of an arylation method for the selective functionalization of alcohol α-hydroxy C−H bonds. This approach employs zinc-mediated alcohol deprotonation to activate α-hydroxy C−H bonds while simultaneously suppressing C−O bond formation by inhibiting the formation of nickel alkoxide species. The use of Zn-based Lewis acids also deactivates other hydridic bonds such as α-amino and α-oxy C−H bonds. This approach facilitates rapid access to benzylic alcohols, an important motif in drug discovery. A 3-step synthesis of the drug Prozac exemplifies the utility of this new method.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201800749-sup-0001-misc_information.pdf12 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. J. Van Den Berg, Hum. Psychopharmacol. Clin. Exp. 1995, 10, S 199;
- 1bW. H. Frishman, J. Cardiovasc. Pharmacol. Ther. 2013, 18, 310.
- 2
- 2aS. W. Kim, W. Zhang, M. J. Krische, Acc. Chem. Res. 2017, 50, 2371;
- 2bH. Xiao, G. Wang, M. J. Krische, Angew. Chem. Int. Ed. 2016, 55, 16119; Angew. Chem. 2016, 128, 16353;
- 2cW. M. Akhtar, C. B. Cheong, J. R. Frost, K. E. Christensen, N. G. Stevenson, T. J. Donohoe, J. Am. Chem. Soc. 2017, 139, 2577;
- 2dD. Shen, D. L. Poole, C. Shotton, A. F. Kornahrens, M. P. Healy, T. J. Donohoe, Angew. Chem. Int. Ed. 2015, 54, 1642; Angew. Chem. 2015, 127, 1662;
- 2eR. Alam, G. A. Molander, J. Org. Chem. 2017, 82, 13728.
- 3
- 3aM. S. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898;
- 3bK. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035;
- 3cJ. Twilton, C. C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Chem. Rev. 2017, 1, 52;
- 3dM. D. Levin, S. Kim, F. D. Toste, ACS Cent. Sci. 2016, 2, 293.
- 4
- 4aZ. Zuo, D. T. Ahneman, J. Chu, J. A. Terrett, A. G. Doyle, D. W. C. MacMillan, Science 2014, 345, 437;
- 4bJ. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff, D. W. C. MacMillan, Nature 2015, 524, 330;
- 4cE. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. DiRocco, I. W. Davies, S. L. Buchwald, D. W. C. MacMillan, Science 2016, 353, 279;
- 4dB. Sahoo, M. N. Hopkinson, F. Glorius, J. Am. Chem. Soc. 2013, 135, 5505;
- 4eX.-Z. Shu, M. Zhang, Y. He, H. Frei, F. D. Toste, J. Am. Chem. Soc. 2014, 136, 5844;
- 4fJ. C. Tellis, D. N. Primer, G. A. Molander, Science 2014, 345, 433;
- 4gY. Ye, M. S. Sanford, J. Am. Chem. Soc. 2012, 134, 9034;
- 4hD. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18566.
- 5
- 5aJ. L. Jeffrey, J. A. Terrett, D. W. C. MacMillan, Science 2015, 349, 1532;
- 5bM. H. Shaw, V. W. Shurtleff, J. A. Terrett, J. D. Cuthbertson, D. W. C. MacMillan, Science 2016, 352, 1304;
- 5cC. C. Le, Y. Liang, R. W. Evans, X. Li, D. W. C. MacMillan, Nature 2017, 547, 79.
- 6
- 6aB. P. Roberts, Chem. Soc. Rev. 1999, 28, 23;
- 6bM. Salamone, M. Bietti, Acc. Chem. Res. 2015, 48, 2895;
- 6cA. Sharma, J. F. Hartwig, Nature 2015, 517, 600;
- 6dX. X. Rong, H.-Q. Pan, W. R. Dolbier, Jr., J. Am. Chem. Soc. 1994, 116, 4532;
- 6eJ. M. Tedder, Angew. Chem. Int. Ed. Engl. 1982, 21, 401; Angew. Chem. 1982, 94, 433.
- 7
- 7aK. E. Torraca, X. Huang, C. A. Parrish, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 10770;
- 7bM. Wolter, G. Nordmann, G. E. Job, S. L. Buchwald, Org. Lett. 2001, 2, 973;
- 7cN. Kataoka, Q. Shelby, J. P. Stambuli, J. F. Hartwig, J. Org. Chem. 2002, 67, 5553.
- 8
- 8aM. Salamone, G. Carboni, M. Bietti, J. Org. Chem. 2016, 81, 9269;
- 8bJ. M. Howell, K. Feng, J. R. Clark, L. J. Trzepkowski, M. C. White, J. Am. Chem. Soc. 2015, 137, 14590;
- 8cM. Lee, M. S. Sanford, J. Am. Chem. Soc. 2015, 137, 12796.
- 9K. P. Kepp, Inorg. Chem. 2016, 55, 9461. By utilizing the Lewis acid additive stoichiometrically, we hypothesize all alkoxide formed in situ remains uncoordinated to the nickel center.
- 10M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, Jr., G. G. Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712.
- 11
- 11aW.-Z. Liu, F. G. Bordwell, J. Org. Chem. 1996, 61, 4778;
- 11bS. F. Nelsen, P. J. Hintz, J. Am. Chem. Soc. 1972, 94, 7114.
- 12The ground-state redox potentials for this catalyst as well as spectrochemical data are detailed in the Supporting Information. Photocatalyst 1 has a similar excited-state lifetime versus photocatalyst 1 (2.0 μs vs. 2.3 μs).
- 13M. Rueping, C. Vila, A. Szadkowska, R. M. Koenigs, J. Fronert, ACS Catal. 2012, 2, 2810.
- 14The ketone product was reduced with NaBH4 in the same vessel. In all cases, the ketone product constituted less than 8 % of the aryl halide derived product in the crude mixture (6:1 to >20:1 ratio of ketone/alcohol), and reduction to the desired benzylic alcohol was conducted to increase the yield of desired product. Product 14 can be obtained in 70 % yield without the reductive work-up by utilizing the same purification conditions as outlined in the Supporting information.
- 15See the Supporting Information for details. When the aldehyde was subjected to the optimized reaction conditions, aldehyde products where observed by 1H NMR and GS–MS analysis.
- 16We attribute the improved efficiency observed with heteroarene coupling partners when utilizing magnesium salts to the higher oxophilicity of magnesium compared to zinc. See Ref. [9].
- 17Secondary alcohols are not competent in the current transformation; they lead to complete protodehalogenation of the arene and oxidation of one equivalent of the alcohol substrate. Efforts to expand the scope to include 2° alcohols are ongoing.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.