Lead-Free Silver-Bismuth Halide Double Perovskite Nanocrystals
Bin Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorJunsheng Chen
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Department of Chemical Physics and NanoLund, Chemical Center, Lund University, P.O. Box 124, 22100 Lund, Sweden
Search for more papers by this authorSongqiu Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorFeng Hong
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorLei Sun
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorPeigeng Han
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorProf. Dr. Tõnu Pullerits
Department of Chemical Physics and NanoLund, Chemical Center, Lund University, P.O. Box 124, 22100 Lund, Sweden
Search for more papers by this authorProf. Dr. Weiqiao Deng
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Keli Han
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, P. R. China
Search for more papers by this authorBin Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorJunsheng Chen
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Department of Chemical Physics and NanoLund, Chemical Center, Lund University, P.O. Box 124, 22100 Lund, Sweden
Search for more papers by this authorSongqiu Yang
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorFeng Hong
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorLei Sun
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Search for more papers by this authorPeigeng Han
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorProf. Dr. Tõnu Pullerits
Department of Chemical Physics and NanoLund, Chemical Center, Lund University, P.O. Box 124, 22100 Lund, Sweden
Search for more papers by this authorProf. Dr. Weiqiao Deng
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Keli Han
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023 P. R. China
Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, P. R. China
Search for more papers by this authorAbstract
Lead-free perovskite nanocrystals (NCs) were obtained mainly by substituting a Pb2+ cation with a divalent cation or substituting three Pb2+ cations with two trivalent cations. The substitution of two Pb2+ cations with one monovalent Ag+ and one trivalent Bi3+ cations was used to synthesize Cs2AgBiX6 (X=Cl, Br, I) double perovskite NCs. Using femtosecond transient absorption spectroscopy, the charge carrier relaxation mechanism was elucidated in the double perovskite NCs. The Cs2AgBiBr6 NCs exhibit ultrafast hot-carrier cooling (<1 ps), which competes with the carrier trapping processes (mainly originate from the surface defects). Notably, the photoluminescence can be increased by 100 times with surfactant (oleic acid) added to passivate the defects in Cs2AgBiCl6 NCs. These results suggest that the double perovskite NCs could be potential materials for optoelectronic applications by better controlling the surface defects.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201800660-sup-0001-misc_information.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. M. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692–3696.
- 2G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, M. V. Kovalenko, Nano Lett. 2015, 15, 5635–5640.
- 3Y. S. Park, S. Guo, N. S. Makarov, V. I. Klimov, ACS Nano 2015, 9, 10386–10393.
- 4F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533–4542.
- 5J. Chen, P. Chábera, T. Pascher, M. E. Messing, R. Schaller, S. Canton, K. Zheng, T. Pullerits, J. Phys. Chem. Lett. 2017, 8, 5119–5124.
- 6J. Song, J. Li, X. Li, L. Xu, Y. Dong, H. Zeng, Adv. Mater. 2015, 27, 7162–7167.
- 7Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun, Adv. Mater. 2015, 27, 7101–7108.
- 8Y. Wang, X. Li, X. Zhao, L. Xiao, H. Zeng, H. Sun, Nano Lett. 2016, 16, 448–453.
- 9X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, Adv. Funct. Mater. 2016, 26, 2435–2445.
- 10J. Pal, S. Manna, A. Mondal, S. Das, K. V. Adarsh, A. Nag, Angew. Chem. Int. Ed. 2017, 56, 14187–14191; Angew. Chem. 2017, 129, 14375–14379.
- 11G. R. Yettapu, D. Talukdar, S. Sarkar, A. Swarnkar, A. Nag, P. Ghosh, P. Mandal, Nano Lett. 2016, 16, 4838–4848.
- 12S. A. Bretschneider, F. Laquai, M. Bonn, J. Phys. Chem. C 2017, 121, 11201–11206.
- 13T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, M. L. Böhm, J. Am. Chem. Soc. 2016, 138, 2941–2944.
- 14A. Wang, X. Yan, M. Zhang, S. Sun, M. Yang, W. Shen, X. Pan, P. Wang, Z. Deng, Chem. Mater. 2016, 28, 8132–8140.
- 15D. Parobek, B. J. Roman, Y. Dong, H. Jin, E. Lee, M. Sheldon, D. H. Son, Nano Lett. 2016, 16, 7376–7380.
- 16W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J. M. Pietryga, V. I. Klimov, J. Am. Chem. Soc. 2016, 138, 14954–14961.
- 17H. Liu, Z. Wu, J. Shao, D. Yao, H. Gao, Y. Liu, W. Yu, H. Zhang, B. Yang, ACS Nano 2017, 11, 2239–2247.
- 18W. J. Mir, M. Jagadeeswararao, S. Das, A. Nag, ACS Energy Lett. 2017, 2, 537–543.
- 19M. Leng, Z. Chen, Y. Yang, Z. Li, K. Zeng, K. Li, G. Niu, Y. He, Q. Zhou, J. Tang, Angew. Chem. Int. Ed. 2016, 55, 15012–15016; Angew. Chem. 2016, 128, 15236–15240.
- 20B. Yang, J. Chen, F. Hong, X. Mao, K. Zheng, S. Yang, Y. Li, T. Pullerits, W. Deng, K. Han, Angew. Chem. Int. Ed. 2017, 56, 12471–12475; Angew. Chem. 2017, 129, 12645–12649.
- 21Y. Zhang, J. Yin, M. R. Parida, G. H. Ahmed, J. Pan, O. M. Bakr, J. Brédas, O. F. Mohammed, J. Phys. Chem. Lett. 2017, 8, 3173–3177.
- 22J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, H. Song, ACS Nano 2017, 11, 9294–9302.
- 23B. Saparov, F. Hong, J. P. Sun, H. S. Duan, W. Meng, S. Cameron, I. G. Hill, Y. F. Yan, D. B. Mitzi, Chem. Mater. 2015, 27, 5622–5632.
- 24G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith, F. Giustino, J. Phys. Chem. Lett. 2016, 7, 1254–1259.
- 25A. H. Slavney, T. Hu, A. M. Lindenberg, H. I. Karunadasa, J. Am. Chem. Soc. 2016, 138, 2138–2141.
- 26E. T. McClure, M. R. Ball, W. Windl, P. M. Woodward, Chem. Mater. 2016, 28, 1348–1354.
- 27G. Volonakis, A. A. Haghighirad, R. L. Milot, W. H. Sio, M. R. Filip, B. Wenger, M. B. Johnston, L. M. Herz, H. J. Snaith, F. Giustino, J. Phys. Chem. Lett. 2017, 8, 772–778.
- 28F. Wei, Z. Deng, S. Sun, F. Zhang, D. M. Evans, G. Kieslich, S. Tominaka, M. A. Carpenter, J. Zhang, P. D. Bristowe, A. K. Cheetham, Chem. Mater. 2017, 29, 1089–1094.
- 29W. Pan, H. Wu, J. Luo, Z. Deng, C. Ge, C. Chen, X. Jiang, W. Yin, G. Niu, L. Zhu, L. Yin, Y. Zhou, Q. Xie, X. Ke, M. Sui, J. Tang, Nat. Photonics 2017, 11, 726–732.
- 30J. Luo, S. Li, H. Wu, Y. Zhou, Y. Li, J. Liu, J. Li, K. Li, F. Yi, G. Niu, J. Tang, ACS Photonics 2018, 5, 398–405.
- 31K. Zheng, K. Žídek, M. Abdellah, J. Chen, P. Chábera, W. Zhang, M. J. Al-Marri, T. Pullerits, ACS Energy Lett. 2016, 1, 1154–1161.
- 32K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, T. Pullerits, J. Phys. Chem. Lett. 2015, 6, 2969–2975.
- 33J. Li, L. Gan, Z. Fang, H. He, Z. Ye, J. Phys. Chem. Lett. 2017, 8, 6002–6008.
- 34K. Wu, G. Liang, Q. Shang, Y. Ren, D. Kong, T. Lian, J. Am. Chem. Soc. 2015, 137, 12792–12795.
- 35J. Luo, Y. Liu, S. Yang, A. L. Flourat, F. Allais, K. Han, J. Phys. Chem. Lett. 2017, 8, 1025–1030.
- 36J. Chen, K. Žídek, P. Chábera, D. Liu, P. Cheng, L. Nuuttila, M. J. Al-Marri, H. Lehtivuori, M. E. Messing, K. Han, K. Zheng, T. Pullerits, J. Phys. Chem. Lett. 2017, 8, 2316–2321.
- 37V. I. Klimov, Annu. Rev. Phys. Chem. 2007, 58, 635–673.
- 38Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, L. Huang, Science 2017, 356, 59–62.
- 39N. S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V. I. Klimov, Nano Lett. 2016, 16, 2349–2362.
- 40H. Chung, S. I. Jung, H. J. Kim, W. Cha, E. Sim, D. Kim, W. Koh, J. Kim, Angew. Chem. Int. Ed. 2017, 56, 4160–4164; Angew. Chem. 2017, 129, 4224–4228.
- 41Y. Yang, D. P. Ostrowski, R. M. France, K. Zhu, J. Lagemaat, J. M. Luther, M. C. Beard, Nat. Photonics 2016, 10, 53–59.
- 42X. Y. Zhu, V. Podzorov, J. Phys. Chem. Lett. 2015, 6, 4758–4761.
- 43S. E. Creutz, E. N. Crites, M. C. De Siena, D. R. Gamelin, Nano Lett. 2018, 18, 1118–1123.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.