The Dewar Isomer of 1,2-Dihydro-1,2-azaborinines: Isolation, Fragmentation, and Energy Storage
Klara Edel
Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
Search for more papers by this authorXinyu Yang
Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860 USA
Search for more papers by this authorJacob S. A. Ishibashi
Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860 USA
Search for more papers by this authorAshley N. Lamm
Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403-1253 USA
Search for more papers by this authorCäcilia Maichle-Mössmer
Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
Search for more papers by this authorZachary X. Giustra
Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860 USA
Search for more papers by this authorCorresponding Author
Shih-Yuan Liu
Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860 USA
Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403-1253 USA
Search for more papers by this authorCorresponding Author
Holger F. Bettinger
Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
Search for more papers by this authorKlara Edel
Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
Search for more papers by this authorXinyu Yang
Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860 USA
Search for more papers by this authorJacob S. A. Ishibashi
Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860 USA
Search for more papers by this authorAshley N. Lamm
Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403-1253 USA
Search for more papers by this authorCäcilia Maichle-Mössmer
Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
Search for more papers by this authorZachary X. Giustra
Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860 USA
Search for more papers by this authorCorresponding Author
Shih-Yuan Liu
Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860 USA
Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, 97403-1253 USA
Search for more papers by this authorCorresponding Author
Holger F. Bettinger
Institut für Organische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
Search for more papers by this authorAbstract
The photochemistry of 1,2-dihydro-1,2-azaborinine derivatives was studied under matrix isolation conditions and in solution. Photoisomerization occurs exclusively to the Dewar valence isomers upon irradiation with UV light (>280 nm) with high quantum yield (46 %). Further photolysis with UV light (254 nm) results in the formation of cyclobutadiene and an iminoborane derivative. The thermal electrocyclic ring-opening reaction of the Dewar valence isomer back to the 1,2-dihydro-1-tert-butyldimethylsilyl-2-mesityl-1,2-azaborinine has an activation barrier of (27.0±1.2) kcal mol−1. In the presence of the Wilkinson catalyst, the ring opening occurs rapidly and exothermically (ΔH=(−48±1) kcal mol−1) at room temperature.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201712683-sup-0001-misc_information.pdf2.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Lennartson, K. Moth-Poulsen in Molecular Devices for Solar Energy Conversion and Storage (Eds.: ), Springer, Singapore, 2018, pp. 327–352;
10.1007/978-981-10-5924-7_9 Google Scholar
- 1bA. Lennartson, A. Roffey, K. Moth-Poulsen, Tetrahedron Lett. 2015, 56, 1457–1465;
- 1cT. J. Kucharski, Y. Tian, S. Akbulatov, R. Boulatov, Energy Environ. Sci. 2011, 4, 4449–4472;
- 1dK. Jorner, A. Dreos, R. Emanuelsson, O. El Bakouri, I. F. Galvan, K. Börjesson, F. Feixas, R. Lindh, B. Zietz, K. Moth-Poulsen, H. Ottosson, J. Mater. Chem. A 2017, 5, 12369–12378;
- 1eA. Dreos, K. Börjesson, Z. Wang, A. Roffey, Z. Norwood, D. Kushnir, K. Moth-Poulsen, Energy Environ. Sci. 2017, 10, 728–734;
- 1fK. Börjesson, A. Lennartson, K. Moth-Poulsen, ACS Sustainable Chem. Eng. 2013, 1, 585–590;
- 1gD. A. Dubonosov, A. V. Bren, V. A. Chernoivanov, Russ. Chem. Rev. 2002, 71, 917–927.
- 2
- 2aV. Caia, G. Cum, R. Gallo, V. Mancini, E. Pitoni, Tetrahedron Lett. 1983, 24, 3903–3904;
- 2bC. Bastianelli, V. Caia, G. Cum, R. Gallo, V. Mancini, J. Chem. Soc. Perkin Trans. 2 1991, 679–683;
- 2cA. M. Kolpak, J. C. Grossman, Nano Lett. 2011, 11, 3156–3162;
- 2dY. Feng, H. Liu, W. Luo, E. Liu, N. Zhao, K. Yoshino, W. Feng, Sci. Rep. 2013, 3, 3260;
- 2eT. J. Kucharski, N. Ferralis, A. M. Kolpak, J. O. Zheng, D. G. Nocera, J. C. Grossman, Nat. Chem. 2014, 6, 441–447.
- 3G. Stein, Isr. J. Chem. 1975, 14, 213–225.
- 4
- 4aV. Gray, A. Lennartson, P. Ratanalert, K. Börjesson, K. Moth-Poulsen, Chem. Commun. 2014, 50, 5330–5332;
- 4bZ.-I. Yoshida, J. Photochem. 1985, 29, 27–40.
- 5
- 5aK. Moth-Poulsen, D. Coso, K. Börjesson, N. Vinokurov, S. K. Meier, A. Majumdar, K. P. C. Vollhardt, R. A. Segalman, Energy Environ. Sci. 2012, 5, 8534–8537;
- 5bK. Börjesson, A. Lennartson, K. Moth-Poulsen, J. Fluorine Chem. 2014, 161, 24–28;
- 5cK. Börjesson, D. Dzebo, B. Albinsson, K. Moth-Poulsen, J. Mater. Chem. A 2013, 1, 8521–8524;
- 5dY. Kanai, V. Srinivasan, S. K. Meier, K. P. C. Vollhardt, J. C. Grossman, Angew. Chem. Int. Ed. 2010, 49, 8926–8929; Angew. Chem. 2010, 122, 9110–9113;
- 5eM. R. Harpham, S. C. Nguyen, Z. Hou, J. C. Grossman, C. B. Harris, M. W. Mara, A. B. Stickrath, Y. Kanai, A. M. Kolpak, D. Lee, D.-J. Liu, J. P. Lomont, K. Moth-Poulsen, N. Vinokurov, L. X. Chen, K. P. C. Vollhardt, Angew. Chem. Int. Ed. 2012, 51, 7692–7696; Angew. Chem. 2012, 124, 7812–7816.
- 6
- 6aW. Schaefer, H. Hellmann, Angew. Chem. Int. Ed. Engl. 1967, 6, 518–525; Angew. Chem. 1967, 79, 566–573;
- 6bJ. F. M. Oth, Recl. Trav. Chim. Pays-Bas 1968, 87, 1185–1195;
- 6cH. Hogeveen, H. C. Volger, Chem. Commun. 1967, 1133–1134;
- 6dW. Adam, J. C. Chang, Int. J. Chem. Kinet. 1969, 1, 487–492.
- 7
- 7aA. J. V. Marwitz, M. H. Matus, L. N. Zakharov, D. A. Dixon, S.-Y. Liu, Angew. Chem. Int. Ed. 2009, 48, 973–977; Angew. Chem. 2009, 121, 991–995;
- 7bE. R. Abbey, L. N. Zakharov, S.-Y. Liu, J. Am. Chem. Soc. 2008, 130, 7250–7252.
- 8
- 8aZ. Liu, T. B. Marder, Angew. Chem. Int. Ed. 2008, 47, 242–244; Angew. Chem. 2008, 120, 248–250;
- 8bM. J. D. Bosdet, W. E. Piers, Can. J. Chem. 2009, 87, 8–29;
- 8cP. G. Campbell, A. J. V. Marwitz, S.-Y. Liu, Angew. Chem. Int. Ed. 2012, 51, 6074–6092; Angew. Chem. 2012, 124, 6178–6197;
- 8dX.-Y. Wang, J.-Y. Wang, J. Pei, Chem. Eur. J. 2015, 21, 3528–3539.
- 9
- 9aL. Liu, A. J. V. Marwitz, B. W. Matthews, S.-Y. Liu, Angew. Chem. Int. Ed. 2009, 48, 6817–6819; Angew. Chem. 2009, 121, 6949–6951;
- 9bD. H. Knack, J. L. Marshall, G. P. Harlow, A. Dudzik, M. Szaleniec, S.-Y. Liu, J. Heider, Angew. Chem. Int. Ed. 2013, 52, 2599–2601; Angew. Chem. 2013, 125, 2660–2662;
- 9cH. Lee, M. Fischer, B. K. Shoichet, S.-Y. Liu, J. Am. Chem. Soc. 2016, 138, 12021–12024.
- 10
- 10aT. Taniguchi, S. Yamaguchi, Organometallics 2010, 29, 5732–5735;
- 10bA. J. V. Marwitz, J. T. Jenkins, L. N. Zakharov, S.-Y. Liu, Angew. Chem. Int. Ed. 2010, 49, 7444–7447; Angew. Chem. 2010, 122, 7606–7609;
- 10cA. J. V. Marwitz, A. N. Lamm, L. N. Zakharov, M. Vasiliu, D. A. Dixon, S.-Y. Liu, Chem. Sci. 2012, 3, 825–829;
- 10dH. Braunschweig, C. Hörl, L. Mailänder, K. Radacki, J. Wahler, Chem. Eur. J. 2014, 20, 9858–9861;
- 10eA. W. Baggett, M. Vasiliu, B. Li, D. A. Dixon, S.-Y. Liu, J. Am. Chem. Soc. 2015, 137, 5536–5541;
- 10fM. Saif, J. R. Widom, S. Xu, E. R. Abbey, S.-Y. Liu, A. H. Marcus, J. Phys. Chem. B 2015, 119, 7985–7993;
- 10gA. W. Baggett, F. Guo, B. Li, S.-Y. Liu, F. Jäkle, Angew. Chem. Int. Ed. 2015, 54, 11191–11195; Angew. Chem. 2015, 127, 11343–11347;
- 10hC. J. Murphy, D. P. Miller, S. Simpson, A. Baggett, A. Pronschinske, M. L. Liriano, A. J. Therrien, A. Enders, S.-Y. Liu, E. Zurek, E. C. H. Sykes, J. Phys. Chem. C 2016, 120, 6020–6030;
- 10iM. Lepeltier, O. Lukoyanova, A. Jacobson, S. Jeeva, D. F. Perepichka, Chem. Commun. 2010, 46, 7007–7009.
- 11M. J. S. Dewar, P. A. Marr, J. Am. Chem. Soc. 1962, 84, 3782–3782.
- 12D. G. White, J. Am. Chem. Soc. 1963, 85, 3634–3636.
- 13
- 13aA. J. Ashe, X. Fang, Org. Lett. 2000, 2, 2089–2091;
- 13bA. J. Ashe, X. Fang, X. Fang, J. W. Kampf, Organometallics 2001, 20, 5413–5418.
- 14E. R. Abbey, A. N. Lamm, A. W. Baggett, L. N. Zakharov, S.-Y. Liu, J. Am. Chem. Soc. 2013, 135, 12908–12913.
- 15
- 15aH. Braunschweig, A. Gackstatter, T. Kupfer, T. Scheller, F. Hupp, A. Damme, N. Arnold, W. C. Ewing, Chem. Sci. 2015, 6, 3461–3465;
- 15bH. Braunschweig, M. A. Celik, F. Hupp, I. Krummenacher, L. Mailänder, Angew. Chem. Int. Ed. 2015, 54, 6347–6351; Angew. Chem. 2015, 127, 6445–6449.
- 16S. A. Brough, A. N. Lamm, S.-Y. Liu, H. F. Bettinger, Angew. Chem. Int. Ed. 2012, 51, 10880–10883; Angew. Chem. 2012, 124, 11038–11041.
- 17
- 17aH. F. Bettinger, O. Hauler, Beilstein J. Org. Chem. 2013, 9, 761–766;
- 17bM.-D. Su, Chem. Eur. J. 2013, 19, 9663–9667;
- 17cJ. Kim, J. Moon, J. S. Lim, ChemPhysChem 2015, 16, 1670–1675.
- 18
- 18aY. Inokuma, S. Yoshioka, J. Ariyoshi, T. Arai, Y. Hitora, K. Takada, S. Matsunaga, K. Rissanen, M. Fujita, Nature 2013, 495, 461–466;
- 18bM. Hoshino, A. Khutia, H. Xing, Y. Inokuma, M. Fujita, IUCrJ 2016, 3, 139–151;
- 18cG. W. Waldhart, N. P. Mankad, B. D. Santarsiero, Org. Lett. 2016, 18, 6112–6115.
- 19K. Edel, S. A. Brough, A. N. Lamm, S.-Y. Liu, H. F. Bettinger, Angew. Chem. Int. Ed. 2015, 54, 7819–7822; Angew. Chem. 2015, 127, 7930–7933.
- 20O. L. Chapman, C. L. McIntosh, J. Pacansky, J. Am. Chem. Soc. 1973, 95, 614–617.
- 21
- 21aCompound 8 crystallizes in the monoclinic space group P21/c with two molecules in a unit cell. The alternate BN distances of 1.460 and 1.466 Å of the nearly planar rhombic ring with angles of 98.05(9)° at the boron atoms and 81.94(9)° at the nitrogen atoms are consistent with literature data;
- 21bP. Paetzold, Adv. Inorg. Chem. 1987, 31, 123–170.
- 22
- 22aM. Haase, U. Klingebiel, Angew. Chem. Int. Ed. Engl. 1985, 24, 324–324; Angew. Chem. 1985, 97, 335–336;
- 22bG. Elter, M. Neuhaus, A. Meller, D. Schmidt-Bäse, J. Organomet. Chem. 1990, 381, 299–313;
- 22cH. Nöth, Angew. Chem. Int. Ed. Engl. 1988, 27, 1603–1623; Angew. Chem. 1988, 100, 1664–1684.
- 23
- 23aH. Braunschweig, A. Damme, J. O. C. Jimenez-Halla, B. Pfaffinger, K. Radacki, J. Wolf, Angew. Chem. Int. Ed. 2012, 51, 10034–10037; Angew. Chem. 2012, 124, 10177–10180;
- 23bH. Braunschweig, K. Geetharani, J. O. C. Jimenez-Halla, M. Schäfer, Angew. Chem. Int. Ed. 2014, 53, 3500–3504; Angew. Chem. 2014, 126, 3568–3572.
- 24N. N. Tyutyulkov, O. E. Polansky, J. Fabian, Z. Naturforsch. A 1975, 30, 1308–1310.
- 25X.-W. An, Y.-D. Xie, Thermochim. Acta 1993, 220, 17–25.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.