Continuous-Flow Synthesis of Biaryls by Negishi Cross-Coupling of Fluoro- and Trifluoromethyl-Substituted (Hetero)arenes
Dr. Stefan Roesner
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Stephen L. Buchwald
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
Search for more papers by this authorDr. Stefan Roesner
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Stephen L. Buchwald
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 USA
Search for more papers by this authorAbstract
A continuous-flow method for the regioselective arylation of fluoroarenes and fluoropyridines has been developed. The telescoped procedure reported here consists of a three-step metalation, zincation, and Negishi cross-coupling sequence, providing efficient access to a variety of functionalized 2-fluorobiaryl products. Precise temperature control of the metalation step, made possible by continuous-flow technology, allowed for the efficient preparation of the arylated products in high yields and short residence times. Additionally, several examples of the regioselective arylation of benzotrifluoride derivatives are also provided.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201605584-sup-0001-misc_information.pdf11.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications, 2nd ed., Wiley-VCH, Weinheim, 2013;
10.1002/9783527651351 Google Scholar
- 1bJ. Wang, M. Sánchez-Roselló, J. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432;
- 1cE. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315;
- 1dB. E. Smart, J. Fluorine Chem. 2001, 109, 3.
- 2W. B. Im, S. H. Choi, J.-Y. Park, S. H. Choi, J. Finn, S.-H. Yoon, J. Med. Chem. 2011, 46, 1027.
- 3P. Anbarasan, H. Neumann, M. Beller, Chem. Asian J. 2010, 5, 1775.
- 4H. Yoshida, R. Yoshida, K. Takaki, Angew. Chem. Int. Ed. 2013, 52, 8629; Angew. Chem. 2013, 125, 8791.
- 5
- 5aE. Negishi, Angew. Chem. Int. Ed. 2011, 50, 6738; Angew. Chem. 2011, 123, 6870;
- 5bP. Knochel, P. Jones, Organozinc Reagents, A Practical Approach, Oxford University Press, New York, 1999.
- 6
- 6aM. Schlosser, J. Organomet. Chem. 1967, 8, 9;
- 6bL. Lochmann, J. Pospíšil, D. Lím, Tetrahedron Lett. 1966, 7, 257.
- 7For reviews, see:
- 7aM. Schlosser, Angew. Chem. Int. Ed. 2005, 44, 376; Angew. Chem. 2005, 117, 380;
- 7bM. Schlosser, Eur. J. Org. Chem. 2001, 3975; for selected examples, see:
- 7cM. Schlosser, G. Katsoulos, S. Takagishi, Synlett 1990, 747;
- 7dM. Schlosser, S. Takagishi, Synlett 1991, 119;
- 7eG. Katsoulos, S. Takagishi, M. Schlosser, Synlett 1991, 731;
- 7fF. Mongin, M. Schlosser, Tetrahedron Lett. 1996, 37, 6551;
- 7gM. Schlosser, F. Mongin, J. Porwisiak, W. Dmowski, H. H. Büker, N. M. M. Nibbering, Chem. Eur. J. 1998, 4, 1281.
10.1002/(SICI)1521-3765(19980710)4:7<1281::AID-CHEM1281>3.0.CO;2-I CAS Web of Science® Google Scholar
- 8
- 8aJ. C. Yang, D. Niu, B. P. Karsten, F. Lima, S. L. Buchwald, Angew. Chem. Int. Ed. 2016, 55, 2531; Angew. Chem. 2016, 128, 2577;
- 8bW. Shu, L. Pellegatti, M. A. Oberli, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 10665; Angew. Chem. 2011, 123, 10853;
- 8cT. Noël, S. Kuhn, A. J. Musacchio, K. F. Jensen, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 5943; Angew. Chem. 2011, 123, 6065;
- 8dW. Shu, S. L. Buchwald, Chem. Sci. 2011, 2, 2321;
- 8eT. Noël, J. R. Naber, L. Hartmann, J. P. McMullen, K. F. Jensen, S. L. Buchwald, Chem. Sci. 2011, 2, 287;
- 8fJ. R. Naber, S. L. Buchwald, Angew. Chem. Int. Ed. 2010, 49, 9469; Angew. Chem. 2010, 122, 9659.
- 9
- 9aY. Yang, N. J. Oldenhuis, S. L. Buchwald, Angew. Chem. Int. Ed. 2013, 52, 615; Angew. Chem. 2013, 125, 643;
- 9bJ. R. Colombe, S. Bernhardt, C. Stathakis, S. L. Buchwald, P. Knochel, Org. Lett. 2013, 15, 5754.
- 10
- 10aT. Wirth, Microreactors in Organic Synthesis and Catalysis, 2nd ed., Wiley-VCH, Weinheim, 2013;
- 10bV. Hessel, A. Renken, J. C. Schouten, J. Yoshida, Micro Process Engineering: A Comprehensive Handbook, Wiley-VCH, Weinheim, 2009.
10.1002/9783527631445 Google Scholar
- 11For recent reviews, see:
- 11aS. Kobayashi, Chem. Asian J. 2016, 11, 425;
- 11bS. V. Ley, D. E. Fitzpatrick, R. M. Myers, C. Battilochio, R. J. Ingham, Angew. Chem. Int. Ed. 2015, 54, 10122; Angew. Chem. 2015, 127, 10260;
- 11cB. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2015, 54, 6688; Angew. Chem. 2015, 127, 6788;
- 11dS. V. Ley, D. E. Fitzpatrick, R. J. Ingham, R. M. Myers, Angew. Chem. Int. Ed. 2015, 54, 3449; Angew. Chem. 2015, 127, 3514;
- 11eJ. C. Pastre, D. L. Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849;
- 11fV. Hessel, D. Kralisch, N. Kockmann, T. Noël, Q. Wang, ChemSusChem 2013, 6, 746;
- 11gJ. Wegner, S. Ceylan, A. Kirschning, Adv. Synth. Catal. 2012, 354, 17;
- 11hT. Noël, S. L. Buchwald, Chem. Soc. Rev. 2011, 40, 5010.
- 12
- 12aJ. Yoshida, Flash Chemistry: Fast Organic Synthesis in Microsystems, Wiley-VCH, Weinheim, 2008;
10.1002/9780470723425 Google Scholar
- 12b“Microreactor Technology in Lithium Chemistry”: A. Nagaki, J. Yoshida in Lithium Compounds in Organic Synthesis: From Fundamentals to Applications (Eds.: ), Wiley-VCH, Weinheim, 2014.
- 13For reviews, see:
- 13aJ. Yoshida, Y. Takahashi, A. Nagaki, Chem. Commun. 2013, 49, 9896;
- 13bJ. Yoshida, Chem. Rec. 2010, 10, 332.
- 14
- 14aA. Nagaki, C. Matsuo, S. Kim, K. Saito, A. Miyazaki, J. Yoshida, Angew. Chem. Int. Ed. 2012, 51, 3245; Angew. Chem. 2012, 124, 3299;
- 14bA. Nagaki, A. Kenmoku, Y. Moriwaki, A. Hayashi, J. Yoshida, Angew. Chem. Int. Ed. 2010, 49, 7543; Angew. Chem. 2010, 122, 7705;
- 14cA. Nagaki, H. Kim, J. Yoshida, Angew. Chem. Int. Ed. 2008, 47, 7833; Angew. Chem. 2008, 120, 7951;
- 14dH. Usutani, Y. Tomida, A. Nagaki, H. Okamoto, T. Nokami, J. Yoshida, J. Am. Chem. Soc. 2007, 129, 3046; for recent examples, see:
- 14eH. Kim, K.-I. Min, K. Inoue, D. J. Im, D.-P. Kim, J. Yoshida, Science 2016, 352, 691;
- 14fS. Laue, V. Haverkamp, L. Mleczko, Org. Process Res. Dev. 2016, 20, 480;
- 14gA. Nagaki, K. Imai, S. Ishiushi, J. Yoshida, Angew. Chem. Int. Ed. 2015, 54, 1914; Angew. Chem. 2015, 127, 1934;
- 14hA. Nagaki, D. Ichinari, J. Yoshida, J. Am. Chem. Soc. 2014, 136, 12245;
- 14iJ. A. Newby, D. W. Blaylock, P. M. Witt, J. C. Pastre, M. K. Zacharova, S. V. Ley, D. L. Browne, Org. Process Res. Dev. 2014, 18, 1211;
- 14jJ. A. Newby, D. W. Blaylock, P. M. Witt, R. M. Turner, P. L. Heider, B. H. Harji, D. L. Browne, S. V. Ley, Org. Process Res. Dev. 2014, 18, 1221.
- 15D. L. Browne, M. Baumann, B. H. Harji, I. R. Baxendale, S. V. Ley, Org. Lett. 2011, 13, 3312.
- 16
- 16aM. R. Becker, P. Knochel, Angew. Chem. Int. Ed. 2015, 54, 12501; Angew. Chem. 2015, 127, 12681;
- 16bM. R. Becker, M. A. Ganiek, P. Knochel, Chem. Sci. 2015, 6, 6649;
- 16cM. R. Becker, P. Knochel, Org. Lett. 2016, 18, 1462.
- 17
- 17aB. Egle, J. M. Muñoz, N. Alonso, W. M. De Borggraeve, A. de la Hoz, A. Díaz-Ortiz, J. Alcázar, J. Flow Chem. 2014, 4, 22;
- 17bN. Alonso, L. Z. Miller, J. M. Muñoz, J. Alcázar, D. T. McQuade, Adv. Synth. Catal. 2014, 356, 3737;
- 17cG. A. Price, A. R. Bogdan, A. L. Aguirre, T. Iwai, S. W. Djuric, M. G. Organ, Catal. Sci. Technol. 2016, 6, 4733.
- 18See the Supporting Information for a detailed description.
- 19
- 19aR. L. Hartman, Org. Process Res. Dev. 2012, 16, 870;
- 19bS. Kuhn, T. Noël, L. Gu, P. L. Heider, K. Jensen, Lab Chip 2011, 11, 3312;
- 19cJ. Sedelmeier, S. V. Ley, I. R. Baxendale, M. Baumann, Org. Lett. 2010, 12, 3618;
- 19dT. Horie, M. Sumino, T. Tanaka, Y. Matsushita, T. Ichimura, J. Yoshida, Org. Process Res. Dev. 2010, 14, 405;
- 19eR. L. Hartman, J. R. Naber, N. Zaborenko, S. L. Buchwald, K. F. Jensen, Org. Process Res. Dev. 2010, 14, 1347.
- 20The absence of acoustic irradiation led to clogging under the reported conditions.
- 21E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257.
- 22
- 22aC. Bobbio, M. Schlosser, J. Org. Chem. 2005, 70, 3039;
- 22bM. Schlosser, M. Marull, Eur. J. Org. Chem. 2003, 1569;
- 22cG. W. Gribble, M. G. Saulnier, Tetrahedron Lett. 1980, 21, 4137.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.