In Situ Modification of Metal–Organic Frameworks in Mixed-Matrix Membranes†
Michael S. Denny Jr.
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Seth M. Cohen
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)Search for more papers by this authorMichael S. Denny Jr.
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Seth M. Cohen
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)Search for more papers by this authorM.S.D. was provided partial stipend and tuition support by a Chancellor's Interdisciplinary ‘Collaboratories’ award (U.C. San Diego). All other aspects of this study were supported by a grant from the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-08ER46519. Mechanical data (tensile strength measurements) were acquired with assistance from Steven Naleway and Prof. Joanna McKittrick at the Department of Mechanical and Aerospace Engineering (UCSD).
Abstract
Processable films of metal–organic frameworks (MOFs) have been long sought to advance the application of MOFs in various technologies from separations to catalysis. Herein, MOF–polymer mixed-matrix membranes (MMMs) are described, formed on several substrates using a wide variety of MOF materials. These MMMs can be delaminated from their substrates to create free-standing MMMs that are mechanically stable and pliable. The MOFs in these MMMs remain highly crystalline, porous, and accessible for further chemical modification through postsynthetic modification (PSM) and postsynthetic exchange (PSE) processes. Overall, the findings here demonstrate a versatile approach to preparing stable functional MMMs that should contribute significantly to the advancement of these materials.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201504077_sm_miscellaneous_information.pdf4.8 MB | miscellaneous_information |
ange_201504077_sm_uio-66_mmm.mpg2.4 MB | uio-66_mmm |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aO. M. Yaghi, M. O′Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705–714;
- 1bS. T. Meek, J. A. Greathouse, M. D. Allendorf, Adv. Mater. 2011, 23, 249–267;
- 1cG. Ferey, Chem. Soc. Rev. 2008, 37, 191–214.
- 2B. Böhringer, R. Fischer, M. R. Lohe, M. Rose, S. Kaskel, P. Küsgens, Metal-Organic Frameworks, Wiley-VCH, Weinheim, 2011, pp. 353–381.
10.1002/9783527635856.ch15 Google Scholar
- 3
- 3aH. Furukawa, K. E. Cordova, M. O′Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 3bJ. R. Li, J. Sculley, H. C. Zhou, Chem. Rev. 2012, 112, 869–932;
- 3cJ. Gascon, F. Kapteijn, Angew. Chem. Int. Ed. 2010, 49, 1530–1532; Angew. Chem. 2010, 122, 1572–1574;
- 3dA. Betard, R. A. Fischer, Chem. Rev. 2012, 112, 1055–1083;
- 3eU. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, J. Mater. Chem. 2006, 16, 626–636;
- 3fS. R. Venna, M. A. Carreon, Chem. Eng. Sci. 2015, 124, 3–19.
- 4
- 4aB. Zornoza, C. Tellez, J. Coronas, J. Gascon, F. Kapteijn, Microporous Mesoporous Mater. 2013, 166, 67–78;
- 4bM. Shah, M. C. McCarthy, S. Sachdeva, A. K. Lee, H. K. Jeong, Ind. Eng. Chem. Res. 2012, 51, 2179–2199;
- 4cS. L. Qiu, M. Xue, G. S. Zhu, Chem. Soc. Rev. 2014, 43, 6116–6140;
- 4dB. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Chem. Soc. Rev. 2015, 44, 2421–2454.
- 5R. Adams, C. Carson, J. Ward, R. Tannenbaum, W. Koros, Microporous Mesoporous Mater. 2010, 131, 13–20.
- 6S. Sorribas, P. Gorgojo, C. Téllez, J. Coronas, A. G. Livingston, J. Am. Chem. Soc. 2013, 135, 15201–15208.
- 7M. Darbandi, H. K. Arslan, O. Shekhah, A. Bashir, A. Birkner, C. Woll, Phys. Status Solidi RRL 2010, 4, 197–199.
- 8N. Stock, S. Biswas, Chem. Rev. 2012, 112, 933–969.
- 9
- 9aS. Basu, M. Maes, A. Cano-Odena, L. Alaerts, D. E. De Vos, I. F. J. Vankelecom, J. Membr. Sci. 2009, 344, 190–198;
- 9bM. J. C. Ordoñez, K. J. Balkus Jr, J. P. Ferraris, I. H. Musselman, J. Membr. Sci. 2010, 361, 28–37;
- 9cC. Zhang, Y. Dai, J. R. Johnson, O. Karvan, W. J. Koros, J. Membr. Sci. 2012, 389, 34–42;
- 9dS. Basu, A. Cano-Odena, I. F. J. Vankelecom, Sep. Purif. Technol. 2011, 81, 31–40.
- 10R. Zhang, S. Ji, N. Wang, L. Wang, G. Zhang, J. R. Li, Angew. Chem. Int. Ed. 2014, 53, 9775–9779; Angew. Chem. 2014, 126, 9933–9937.
- 11Y. Zhang, X. Feng, H. Li, Y. Chen, J. Zhao, S. Wang, L. Wang, B. Wang, Angew. Chem. Int. Ed. 2015, 54, 4259–4263; Angew. Chem. 2015, 127, 4333–4337.
- 12
- 12aD. M. Jiang, A. D. Burrows, Y. L. Xiong, K. J. Edler, J. Mater. Chem. A 2013, 1, 5497–5500;
- 12bS. N. Wijenayake, N. P. Panapitiya, S. H. Versteeg, C. N. Nguyen, S. Goel, K. J. Balkus, I. H. Musselman, J. P. Ferraris, Ind. Eng. Chem. Res. 2013, 52, 6991–7001.
- 13S. M. Cohen, Chem. Rev. 2012, 112, 970–1000.
- 14
- 14aY. Zhang, I. H. Musselman, J. P. Ferraris, K. J. Balkus Jr, J. Membr. Sci. 2008, 313, 170–181;
- 14bB. Zornoza, B. Seoane, J. M. Zamaro, C. Tellez, J. Coronas, ChemPhysChem 2011, 12, 2781–2785.
- 15
- 15aJ.-L. Zhuang, D. Ceglarek, S. Pethuraj, A. Terfort, Adv. Funct. Mater. 2011, 21, 1442–1447;
- 15bJ. L. Zhuang, D. Ar, X. J. Yu, J. X. Liu, A. Terfort, Adv. Mater. 2013, 25, 4631–4635;
- 15cC. Carbonell, I. Imaz, D. Maspoch, J. Am. Chem. Soc. 2011, 133, 2144–2147.
- 16J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850–13851.
- 17S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148–1150.
- 18
- 18aG. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surble, I. Margiolaki, Science 2005, 309, 2040–2042;
- 18bK. M. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, W. Lin, J. Am. Chem. Soc. 2009, 131, 14261–14263.
- 19
- 19aC. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, G. Ferey, J. Am. Chem. Soc. 2002, 124, 13519–13526;
- 19bF. Millange, C. Serre, N. Guillou, G. Ferey, R. I. Walton, Angew. Chem. Int. Ed. 2008, 47, 4100–4105; Angew. Chem. 2008, 120, 4168–4173.
- 20K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O′Keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.
- 21S. J. Garibay, S. M. Cohen, Chem. Commun. 2010, 46, 7700–7702.
- 22
- 22aX. L. Liu, Y. S. Li, G. Q. Zhu, Y. J. Ban, L. Y. Xu, W. S. Yang, Angew. Chem. Int. Ed. 2011, 50, 10636–10639; Angew. Chem. 2011, 123, 10824–10827;
- 22bK. Díaz, M. López-González, L. F. del Castillo, E. Riande, J. Membr. Sci. 2011, 383, 206–213;
- 22cK. Díaz, L. Garrido, M. López-González, L. F. del Castillo, E. Riande, Macromolecules 2010, 43, 316–325.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.