Copper-Catalyzed Cyanomethylation of Allylic Alcohols with Concomitant 1,2-Aryl Migration: Efficient Synthesis of Functionalized Ketones Containing an α-Quaternary Center†
Dr. Ala Bunescu
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne (Switzerland) http://lspn.epfl.ch
Search for more papers by this authorDr. Qian Wang
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne (Switzerland) http://lspn.epfl.ch
Search for more papers by this authorCorresponding Author
Prof. Dr. Jieping Zhu
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne (Switzerland) http://lspn.epfl.ch
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne (Switzerland) http://lspn.epfl.chSearch for more papers by this authorDr. Ala Bunescu
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne (Switzerland) http://lspn.epfl.ch
Search for more papers by this authorDr. Qian Wang
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne (Switzerland) http://lspn.epfl.ch
Search for more papers by this authorCorresponding Author
Prof. Dr. Jieping Zhu
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne (Switzerland) http://lspn.epfl.ch
Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015 Lausanne (Switzerland) http://lspn.epfl.chSearch for more papers by this authorFinancial support from the EPFL (Switzerland) and the Swiss National Science Foundation (SNSF) is gratefully acknowledged.
Abstract
A copper-catalyzed alkylation of allylic alcohols by alkyl nitriles with concomitant 1,2-aryl migration was developed. Formation of the alkyl nitrile radical was followed by its intermolecular addition to alkenes and the migration of a vicinal aryl group with the concomitant generation of a carbonyl functionality to complete the domino sequence. Mechanistic studies suggested that 1,2-aryl migration proceeded through a radical pathway (neophyl rearrangement). The protocol provided an efficient route to functionalized ketones containing an α-quaternary center.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201411657_sm_miscellaneous_information.pdf6.6 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. W. Coates, P. D. Hustad, S. Reinartz, Angew. Chem. Int. Ed. 2002, 41, 2236–2257; Angew. Chem. 2002, 114, 2340–2361.
- 2F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk, B. C. Shook, J. Med. Chem. 2010, 53, 7902–7917; for a review on nitrile-containing natural compounds, see: F. Fleming, Nat. Prod. Rep. 1999, 16, 597–606.
- 3Z. Rappoport, The Chemistry of the Cyano Group, Wiley, London, 1970.
10.1002/9780470771242 Google Scholar
- 4
- 4aD. M. Schultz, J. P. Wolfe, Synthesis 2012, 351–361;
- 4bR. I. McDonald, G. Liu, S. S. Stahl, Chem. Rev. 2011, 111, 2981–3019;
- 4cK. H. Jensen, M. S. Sigman, Org. Biomol. Chem. 2008, 6, 4083–4088;
- 4dA. Minatti, K. Muñiz, Chem. Soc. Rev. 2007, 36, 1142–1152.
- 5aS. R. Chemler, P. H. Fuller, Chem. Soc. Rev. 2007, 36, 1153–1160;
- 5bG. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054–3131;
- 5cA. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem. Int. Ed. 2011, 50, 11062–11087; Angew. Chem. 2011, 123, 11256–11283;
- 5dC. Zhang, C. Tang, N. Jiao, Chem. Soc. Rev. 2012, 41, 3464–3484;
- 5eY. Shimizu, M. Kanai, Tetrahedron Lett. 2014, 55, 3727–3737.
- 6For the copper-catalyzed difunctionalization of alkenes initiated by aminocupration, see:
- 6aT. P. Zabawa, D. Kasi, S. R. Chemler, J. Am. Chem. Soc. 2005, 127, 11250–11251;
- 6bW. Zeng, S. R. Chemler, J. Am. Chem. Soc. 2007, 129, 12948–12949;
- 6cP. H. Fuller, J.-W. Kim, S. R. Chemler, J. Am. Chem. Soc. 2008, 130, 17638–17639;
- 6dM. C. Paderes, S. R. Chemler, Eur. J. Org. Chem. 2011, 3679–3684;
- 6eT. W. Liwosz, S. R. Chemler, J. Am. Chem. Soc. 2012, 134, 2020–2023;
- 6fY. Miller, L. Miao, A. S. Hosseini, S. R. Chemler, J. Am. Chem. Soc. 2012, 134, 12149–12156.
- 7For the copper-catalyzed diamination of alkenes, see:
- 7aB. Zhao, X. Peng, S. Cui, Y. Shi, J. Am. Chem. Soc. 2010, 132, 11009–11011;
- 7bB. Zhao, X. Peng, Y. Zhu, T. A. Ramirez, R. G. Cornwall, Y. Shi, J. Am. Chem. Soc. 2011, 133, 20890–20900;
- 7cY.-F. Wang, X. Zhu, S. Chiba, J. Am. Chem. Soc. 2012, 134, 3679–3682.
- 8For the copper-catalyzed trifluoromethylation of alkenes, see:
- 8aA. T. Parsons, S. L. Buchwald, Angew. Chem. Int. Ed. 2011, 50, 9120–9123; Angew. Chem. 2011, 123, 9286–9289;
- 8bJ. Xu, Y. Fu, D.-F. Luo, Y.-Y. Jiang, B. Xiao, Z.-J. Liu, T.-J. Gong, L. Liu, J. Am. Chem. Soc. 2011, 133, 15300–15303;
- 8cX. Wang, Y. Ye, S. Zhang, J. Feng, Y. Xu, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2011, 133, 16410–16413;
- 8dR. Zhu, S. L. Buchwald, J. Am. Chem. Soc. 2012, 134, 12462–12465;
- 8eL. Chu, F.-L. Qing, Org. Lett. 2012, 14, 2106–2109;
- 8fP. G. Janson, I. Ghoneim, N. O. Ilchenko, K. Szabó, Org. Lett. 2012, 14, 2882–2885;
- 8gR. Zhu, S. L. Buchwald, Angew. Chem. Int. Ed. 2013, 52, 12655–12658; Angew. Chem. 2013, 125, 12887–12890;
- 8hH. Egami, R. Shimizu, S. Kawamura, M. Sodeoka, Angew. Chem. Int. Ed. 2013, 52, 4000–4003; Angew. Chem. 2013, 125, 4092–4095;
- 8iH. Egami, S. Kawamura, A. Miyazaki, M. Sodeoka, Angew. Chem. Int. Ed. 2013, 52, 7841–7844; Angew. Chem. 2013, 125, 7995–7998;
- 8jfor a highlight, see: A. Studer, Angew. Chem. Int. Ed. 2012, 51, 8950–8958; Angew. Chem. 2012, 124, 9082–9090.
- 9
- 9aS. D. Ittel, C. A. Tolman, A. D. English, J. P. Jesson, J. Am. Chem. Soc. 1978, 100, 7577–7585;
- 9bH. J. Heeres, A. Meetsma, J. H. Teuben, Angew. Chem. Int. Ed. Engl. 1990, 29, 420–422; Angew. Chem. 1990, 102, 449–450;
- 9cD. Churchill, J. H. Shin, T. Hascall, J. M. Hahn, B. M. Bridgewater, G. Parkin, Organometallics 1999, 18, 2403–2406;
- 9dM. E. Evans, T. Li, A. J. Vetter, R. D. Rieth, W. D. Jones, J. Org. Chem. 2009, 74, 6907–6914.
- 10For the catalytic CH functionalization of nitriles, see:
- 10aN. Kumagai, S. Matsunage, M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 13632–13633;
- 10bfor a general review on metal-enolate chemistry, see: F. Dénès, A. Pérez-Luna, F. Chemla, Chem. Rev. 2010, 110, 2366–2447.
- 11A. Bunescu, Q. Wang, J. Zhu, Chem. Eur. J. 2014, 20, 14633–14636.
- 12For related studies, see:
- 12aJ. Li, Z. Wang, N. Wu, G. Gao, J. You, Chem. Commun. 2014, 50, 15049–15051;
- 12bJ. Shen, D. Yang, Y. Liu, S. Qin, J. Zhang, J. Sun, C. Liu, C. Liu, X. Zhao, C. Chu, R. Liu, Org. Lett. 2014, 16, 350–353.
- 13For recent examples of 1,2-aryl migration involving allylic alcohols, see:
- 13aX.-Q. Chu, H. Meng, Y. Zi, X.-P. Xu, S.-J. Ji, Chem. Eur. J. 2014, 20, 17198–17206;
- 13bY. Li, B. Liu, H.-B. Li, Q. Wang, J.-H. Li, Chem. Commun. 2015, 51, 1024–1026;
- 13cZ.-M. Chen, Z. Zhang, Y.-Q. Tu, M.-H. Xu, F.-M. Zhang, C.-C. Li, S.-H. Wang, Chem. Commun. 2014, 50, 10805–10808;
- 13dZ.-M. Chen, W. Bai, S.-H. Wang, B.-M. Yang, Y.-Q. Tu, F.-M. Zhang, Angew. Chem. Int. Ed. 2013, 52, 9781–9785; Angew. Chem. 2013, 125, 9963–9967;
- 13eM. Salamone, M. Bietti, Synlett 2014, 25, 1803;
- 13fX. Liu, F. Xiong, X. Huang, L. Xu, P. Li, X. Wu, Angew. Chem. Int. Ed. 2013, 52, 6962–6966; Angew. Chem. 2013, 125, 7100–7104;
- 13gX. Liu, X. Wu, Synlett 2013, 1882–1886;
- 13hH. Egami, R. Shimizu, Y. Usui, M. Sodeoka, Chem. Commun. 2013, 49, 7346–7348;
- 13iH. Li, F.-M. Zhang, Y.-Q. Tu, Q.-W. Zhang, Z.-M. Chen, Z.-H. Chen, J. Li, Chem. Sci. 2011, 2, 1839–1841; for an example of 1,4-migration, see:
- 13jP. Gao, Y.-W. Shen, R. Fang, X.-H. Hao, Z.-H. Qiu, F. Yang, X.-B. Yan, Q. Wang, X.-J. Gong, X.-Y. Liu, Y.-M. Liang, Angew. Chem. Int. Ed. 2014, 53, 7629–7633; Angew. Chem. 2014, 126, 7759–7763.
- 14For examples, see:
- 14aS. Hayashi, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2009, 131, 2052–2053 and Ref. [8d].
- 15Copper salts: Cu(OTf)2, Cu(ClO4)2⋅6 H2O, Cu(OAc)2, CuSO4, CuBr, Cu(NO3)⋅3 H2O; ligands: pyridine, 2,2′-bipyridine, 4,4′-dimethoxy bipyridine, 2,2′-bipyrimidine, neocuproine, 1,10-phenanthroline, 4,5-diazafluoren-9-one; bases: KOAc, LiOAc, K3PO4, K2CO3, Na3PO4, Li3PO4, CsOPiv, CsOH⋅H2O.
- 16For reviews on pinacol/semipinacol rearrangements, see:
- 16aK.-D. Umland, S. F. Kirsch, Synlett 2013, 1471–1484;
- 16bB. Wang, Y. Tu, Acc. Chem. Res. 2011, 44, 1207–1222;
- 16cT. J. Snape, Chem. Soc. Rev. 2007, 36, 1823–1842.
- 17
- 17aC. S. Aureliano Antunes, M. Bietti, G. Ercolani, O. Lanzalunga, M. Salamone, J. Org. Chem. 2005, 70, 3884–3891;
- 17bfor a review, see: A. Studer, M. Bossart, Tetrahedron 2001, 57, 9649–9667.
- 18
- 18aJ. Meinwald, S. S. Labana, M. S. Chadha, J. Am. Chem. Soc. 1963, 85, 582–585;
- 18bfor a Cu(BF4)2-promoted Meinwald rearrangement, see: M. W. C. Robinson, K. S. Pillinger, I. Mabbett, D. A. Timms, A. E. Graham, Tetrahedron 2010, 66, 8377–8382.
- 19Copper preferentially undergoes C-metalation with alkyl nitriles; see:
- 19aM. Purzycki, W. Liu, G. Hilmersson, F. F. Fleming, Chem. Commun. 2013, 49, 4700–4702;
- 19bY. Suto, R. Tsuji, M. Kanai, M. Shibasaki, Org. Lett. 2005, 7, 3757–3760;
- 19cE. J. Corey, I. Kuwajima, Tetrahedron Lett. 1972, 13, 487–489.
10.1016/S0040-4039(01)84357-4 Google Scholar
- 20
- 20aJ. F. Normant, A. Alexakis, Synthesis 1981, 841–870;
- 20bE. Nakamura, M. isaka, S. Mstsuzawa, J. Am. Chem. Soc. 1988, 110, 1297–1298;
- 20cL. Huang, H. Jiang, C. Qi, X. Liu, J. Am. Chem. Soc. 2010, 132, 17652–17654;
- 20dK. K. Toh, Y.-F. Wang, E. P. J. Ng, S. Chiba, J. Am. Chem. Soc. 2011, 133, 13942–13945.
- 21C. L. Jenkins, J. K. Kochi, J. Am. Chem. Soc. 1972, 94, 843–855.
- 22Q. Xia, X. Liu, Y. Zhang, C. Chen, W. Chen, Org. Lett. 2013, 15, 3326–3329.
- 23For recent examples of DTBP-mediated transformations, see:
- 23aM.-B. Zhou, R.-J. Song, X.-H. Ouyang, Y. Liu, W.-T. Wei, G.-B. Deng, J.-H. Li, Chem. Sci. 2013, 4, 2690–2694;
- 23bS.-L. Zhou, L.-N. Guo, H. Wang, X.-H. Duan, Chem. Eur. J. 2013, 19, 12970–12973;
- 23cZ. Li, Y. Zhang, L. Zhang, Z.-Q. Liu, Org. Lett. 2014, 16, 382–385.
- 24
- 24aG. E. Morris, D. Oakley, D. A. Pippard, D. J. H. Smith, J. Chem. Soc. Chem. Commun. 1987, 411–412;
- 24bR. T. Gephart III, C. L. McMullin, N. G. Sapiezynski, E. S. Jang, M. J. B. Aguila, T. R. Cundari, T. H. Warren, J. Am. Chem. Soc. 2012, 134, 17350–17353.
- 25C. Zhang, N. Jiao, J. Am. Chem. Soc. 2010, 132, 28–29.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.