General Method for the Synthesis of Salicylic Acids from Phenols through Palladium-Catalyzed Silanol-Directed CH Carboxylation†
Yang Wang
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, Chicago, IL 60607 (USA) http://www.chem.uic.edu/vggroup
Search for more papers by this authorCorresponding Author
Prof. Dr. Vladimir Gevorgyan
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, Chicago, IL 60607 (USA) http://www.chem.uic.edu/vggroup
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, Chicago, IL 60607 (USA) http://www.chem.uic.edu/vggroupSearch for more papers by this authorYang Wang
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, Chicago, IL 60607 (USA) http://www.chem.uic.edu/vggroup
Search for more papers by this authorCorresponding Author
Prof. Dr. Vladimir Gevorgyan
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, Chicago, IL 60607 (USA) http://www.chem.uic.edu/vggroup
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Room 4500, Chicago, IL 60607 (USA) http://www.chem.uic.edu/vggroupSearch for more papers by this authorWe gratefully acknowledge the National Institutes of Health (GM-64444) and National Science Foundation (CHE-1362541) for financial support. We also thank Marvin Parasram for helpful discussions during preparation of the manuscript.
Abstract
A silanol-directed, palladium-catalyzed CH carboxylation reaction of phenols to give salicylic acids has been developed. This method features high efficiency and selectivity, and excellent functional-group tolerance. The generality of this method was demonstrated by the carboxylation of estrone and by the synthesis of an unsymmetrically o,o′-disubstituted phenolic compound through two sequential CH functionalization processes.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201410375_sm_miscellaneous_information.pdf2.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aP. Elwood, M. Morgan, G. Brown, J. Pickering, Br. Med. J. 2005, 330, 1440–1441;
- 1bO. El-Kabbani, P. J. Scammells, J. Gosling, U. Dhagat, S. Endo, T. Matsunaga, M. Soda, A. Hara, J. Med. Chem. 2009, 52, 3259–3264;
- 1cS. A. Hawley, M. D. Fullerton, F. A. Ross, J. D. Schertzer, C. Chevtzoff, K. Walker, M. W. Peggie, D. Zibrova, K. A. Green, K. J. Mustard, B. K. Kemp, K. Sakamoto, G. R. Steinberg, D. G. Hardie, Science 2012, 336, 918–922.
- 2
- 2aJ. Luo, S. Preciado, I. Larrosa, J. Am. Chem. Soc. 2014, 136, 4109–4112;
- 2bA. Ooguri, K. Nakai, T. Kurahashi, S. Matsubara, J. Am. Chem. Soc. 2009, 131, 13194–13195;
- 2cY. Ebe, T. Nishimura, J. Am. Chem. Soc. 2014, 136, 9284–9287;
- 2dC. Wang, I. Piel, F. Glorius, J. Am. Chem. Soc. 2009, 131, 4194–4195.
- 3
- 3aD. L. Caulder, C. Brückner, R. E. Powers, S. König, T. N. Parac, L. A. Leary, K. N. Raymond, J. Am. Chem. Soc. 2001, 123, 8923–8938;
- 3bM. C. Roberts, M. C. Hanson, A. P. Massey, E. A. Karren, P. F. Kiser, Adv. Mater. 2007, 19, 2503–2507;
- 3cS. Barman, S. K. Mukhopadhyay, K. K. Behara, S. Dey, N. D. P. Singh, ACS Appl. Mater. Interfaces 2014, 6, 7045–7054;
- 3dH. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 974–986.
- 4
- 4aA. Lindsey, H. Jeskey, Chem. Rev. 1957, 57, 583–620;
- 4bT. Hansen, L. Skattebøl, Tetrahedron Lett. 2005, 46, 3357–3358;
- 4cD. Chakraborty, R. R. Gowda, P. Malik, Tetrahedron Lett. 2009, 50, 6553–6556;
- 4dG. H. Posner, K. A. Canella, J. Am. Chem. Soc. 1985, 107, 2571–2573; recently, an elegant synthesis of salicylic acid by the CH hydroxygenation of benzoic acid was reported:
- 4eY.-H. Zhang, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 14654–14655.
- 5For general reviews on transition-metal-catalyzed CH activation reactions, see:
- 5aJ. Wencel-Delord, T. Droge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740–4761;
- 5bS. Enthaler, A. Company, Chem. Soc. Rev. 2011, 40, 4912–4924;
- 5cL.-M. Xu, B.-J. Li, Z. Yang, Z.-J. Shi, Chem. Soc. Rev. 2010, 39, 712–733;
- 5dT. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147–1169;
- 5eE. M. Beccalli, G. Broggini, M. Martinelli, S. Sottocornola, Chem. Rev. 2007, 107, 5318–5365;
- 5fD. A. Alonso, C. Nájera, I. M. Pastor, M. Yus, Chem. Eur. J. 2010, 16, 5274–5284;
- 5g CH Activation, Topics in Current Chemistry, Vol. 292 (Eds.: ), Springer, Berlin, 2010;
- 5hC. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215;
- 5iI. V. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173–1193.
- 6For the first stoichiometric palladium-mediated CH carboxylation reaction, see: Y. Fujiwara, T. Kawauchi, H. Taniguchi, J. C. S. Chem. Commun. 1980, 220–221.
- 7For examples of direct CH carboxylation, see:
- 7aW. Lu, Y. Yamaoka, Y. Taniguchi, T. Kitamura, K. Takaki, Y. Fujiwara, J. Organomet. Chem. 1999, 580, 290–294;
- 7bV. V. Grushin, W. J. Marshall, D. L. Thorn, Adv. Synth. Catal. 2001, 343, 161–165.
- 8For examples of directed CH carboxylation, see:
- 8aR. Giri, J.-Q. Yu, J. Am. Chem. Soc. 2008, 130, 14082–14083;
- 8bR. Giri, J. K. Lam, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 686–693;
- 8cC. E. Houlden, M. Hutchby, C. D. Bailey, J. G. Ford, S. N. G. Tyler, M. R. Gagné, G. C. Lloyd-Jones, K. I. Booker-Milburn, Angew. Chem. Int. Ed. 2009, 48, 1830–1833; Angew. Chem. 2009, 121, 1862–1865;
- 8dZ. Guan, Z. Ren, S. M. Spinella, S. Yu, Y. Liang, X. Zhang, J. Am. Chem. Soc. 2009, 131, 729–733;
- 8eH. Li, G.-C. Cai, Z.-J. Shi, Dalton Trans. 2010, 39, 10442–10446;
- 8fP. Xie, Y. Xie, B. Qian, H. Zhou, C. Xia, H. Huang, J. Am. Chem. Soc. 2012, 134, 9902–9905;
- 8gF. Mo, L. J. Trzepkowski, G. Dong, Angew. Chem. Int. Ed. 2012, 51, 13075–13079; Angew. Chem. 2012, 124, 13252–13256;
- 8hB. Liu, H.-Z. Jiang, B.-F. Shi, Org. Biomol. Chem. 2014, 12, 2538–2542; for a leading book on carbonylation reactions, see:
- 8i Catalytic Carbonylation Reactions, Vol. 18, Topics in Current Chemistry (Ed.: ), Springer, Berlin, 2006.
- 9
- 9aY. Lu, D. Leow, X. Wang, K. M. Engle, J.-Q. Yu, Chem. Sci. 2011, 2, 967–971;
- 9bS. Luo, F. Luo, X. Zhang, Z.-J. Shi, Angew. Chem. Int. Ed. 2013, 52, 10598–10601; Angew. Chem. 2013, 125, 10792–10795; see also:
- 9cT. H. Lee, J. Jayakumar, C. H. Cheng, S. C. Chuang, Chem. Commun. 2013, 49, 11797–11799; for a ruthenium-catalyzed, hydroxy-group-directed carbonylation reaction, see:
- 9dK. Inamoto, Y. Kondo, Org. Lett. 2013, 15, 3962–3965.
- 10
- 10aC. Huang, B. Chattopadhyay, V. Gevorgyan, J. Am. Chem. Soc. 2011, 133, 12406–12409;
- 10bC. Huang, N. Ghavtadze, B. Chattopadhyay, V. Gevorgyan, J. Am. Chem. Soc. 2011, 133, 17630–17633; for other examples of CH activation with a silicon tether, see:
- 10cN. Chernyak, A. S. Dudnik, C. Huang, V. Gevorgyan, J. Am. Chem. Soc. 2010, 132, 8270–8272;
- 10dA. S. Dudnik, N. Chernyak, C. Huang, V. Gevorgyan, Angew. Chem. Int. Ed. 2010, 49, 8729–8732; Angew. Chem. 2010, 122, 8911–8914;
- 10eC. Huang, N. Chernyak, A. S. Dudnik, V. Gevorgyan, Adv. Synth. Catal. 2011, 353, 1285–1305;
- 10fC. Huang, N. Ghavtadze, B. Godoi, V. Gevorgyan, Chem. Eur. J. 2012, 18, 9789–9792;
- 10gD. Sarkar, F. S. Melkonyan, A. V. Gulevich, V. Gevorgyan, Angew. Chem. Int. Ed. 2013, 52, 10800–10804; Angew. Chem. 2013, 125, 11000–11004;
- 10hC. Wang, H. Ge, Chem. Eur. J. 2011, 17, 14371–14374;
- 10iS. Lee, H. Lee, K. L. Tan, J. Am. Chem. Soc. 2013, 135, 18778–18781;
- 10jN. Ghavtadze, F. S. Melkonyan, A. V. Gulevich, C. Huang, V. Gevorgyan, Nat. Chem. 2014, 6, 122–125;
- 10kQ. Li, M. Driess, J. F. Hartwig, Angew. Chem. Int. Ed. 2014, 53, 8471–8474; Angew. Chem. 2014, 126, 8611–8614;
- 10lB. Li, M. Driess, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 6586–6589;
- 10mE. M. Simmons, J. F. Hartwig, Nature 2012, 483, 70–73;
- 10nY. Kuninobu, T. Nakahara, H. Takeshima, K. Takai, Org. Lett. 2013, 15, 426–428;
- 10oA. V. Gulevich, F. S. Melkonyan, D. Sarkar, V. Gevorgyan, J. Am. Chem. Soc. 2012, 134, 5528–5531;
- 10pA. Kuznetsov, Y. Onishi, Y. Inamoto, V. Gevorgyan, Org. Lett. 2013, 15, 2498–2501; for two leading reviews on the use of removable groups to direct organic reactions, see:
- 10qG. Rousseau, B. Breit, Angew. Chem. Int. Ed. 2011, 50, 2450–2494; Angew. Chem. 2011, 123, 2498–2543;
- 10rF. Zhang, D. R. Spring, Chem. Soc. Rev. 2014, 43, 6906–6919.
- 11For a single example of a nonselective (o/p 1:9) direct CH carboxylation reaction of phenol, see: S. Ohashi, S. Sakaguchi, Y. Ishii, Chem. Commun. 2005, 486–488.
- 12For alkoxy directing groups, see:
- 12aG. Li, G. D. Leow, L. Wan, J.-Q. Yu, Angew. Chem. Int. Ed. 2013, 52, 1245–1247; Angew. Chem. 2013, 125, 1283–1285;
- 12bJ. Oyamada, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2011, 50, 10720–10723; Angew. Chem. 2011, 123, 10908–10911;
- 12cÁ. Iglesias, R. Álvarez, Á. R. de Lera, K. Muñiz, Angew. Chem. Int. Ed. 2012, 51, 2225–2228; Angew. Chem. 2012, 124, 2268–2271;
- 12dC. W. Liskey, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 12422–12425;
- 12eS. Kawamorita, H. Ohmiya, K. Hara, A. Fukuoka, M. Sawamura, J. Am. Chem. Soc. 2009, 131, 5058–5059;
- 12fB. Ghaffari, S. M. Preshlock, D. L. Plattner, R. J. Staples, P. E. Maligres, S. W. Krska, R. E. Maleczka, Jr., M. R. Smith III, J. Am. Chem. Soc. 2014, 136, 14345–14348; for OAc as a directing group, see:
- 12gB. Xiao, Y. Fu, J. Xu, T.-J. Gong, J.-J. Dai, J. Yi, L. Liu, J. Am. Chem. Soc. 2010, 132, 468–469;
- 12hT. Gensch, M. Rönnefahrt, R. Czerwonka, A. Jäger, O. Kataeva, I. Bauer, H. Knölker, Chem. Eur. J. 2012, 18, 770–776.
- 13For related studies, see:
- 13aK. Orito, A. Horibata, T. Nakamura, H. Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, M. Tokuda, J. Am. Chem. Soc. 2004, 126, 14342–14343;
- 13bD. Milstein, Acc. Chem. Res. 1988, 21, 428–434. On the other hand, the possibility that CO inserts into the PdO bond, followed by reductive elimination, could not be excluded; see:
- 13cK. A. Bernard, J. D. Atwood, Organometallics 1989, 8, 795–800;
- 13dY. Hu, J. Liu, Z. Lu, X. Luo, H. Zhang, Y. Lan, A. Lei, J. Am. Chem. Soc. 2010, 132, 3153–3158.
- 14
- 14aR. W. Hallowell, M. R. Horton, Drugs 2014, 74, 443–450;
- 14bR. Marcén, Drugs 2009, 69, 2227–2243;
- 14cD. A. Whiting, Nat. Prod. Rep. 2001, 18, 583–606.
- 15For the unsymmetrical double CH functionalization of arenes, see:
- 15aH. Wang, G. Li, K. M. Engle, J.-Q. Yu, H. M. L. Davies, J. Am. Chem. Soc. 2013, 135, 6774–6777;
- 15bB. R. Rosen, L. R. Simke, P. S. Thuy-Boun, D. D. Dixon, J.-Q. Yu, P. S. Baran, Angew. Chem. Int. Ed. 2013, 52, 7317–7320; Angew. Chem. 2013, 125, 7458–7461;
- 15cS. Li, G. Chen, C.-G. Feng, W. Gong, J.-Q. Yu, J. Am. Chem. Soc. 2014, 136, 5267–5270;
- 15dE. M. Beck, R. Hatley, M. J. Gaunt, Angew. Chem. Int. Ed. 2008, 47, 3004–3007; Angew. Chem. 2008, 120, 3046–3049; see also Ref. [10g].
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.