Regiodivergent Addition of Phenols to Allylic Oxides: Control of 1,2- and 1,4-Additions for Cyclitol Synthesis†
Matthew J. Moschitto
Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave., Ithaca, NY 14853 (USA)
These authors contributed equally to this work.
Search for more papers by this authorDavid N. Vaccarello
Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave., Ithaca, NY 14853 (USA)
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Chad A. Lewis
Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave., Ithaca, NY 14853 (USA)
Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave., Ithaca, NY 14853 (USA)Search for more papers by this authorMatthew J. Moschitto
Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave., Ithaca, NY 14853 (USA)
These authors contributed equally to this work.
Search for more papers by this authorDavid N. Vaccarello
Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave., Ithaca, NY 14853 (USA)
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Chad A. Lewis
Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave., Ithaca, NY 14853 (USA)
Department of Chemistry and Chemical Biology, Cornell University, 259 East Ave., Ithaca, NY 14853 (USA)Search for more papers by this authorThe project described was supported by Award Number T32GM008500 (M.J.M.) from the National Institute of General Medical Sciences and generously supported by Cornell University. We thank Anthony Condo for mass spectra data collection and Ivan Keresztes for assistance with the NMR spectra.
Abstract
Control of 1,2- and 1,4-addition of substituted phenols to allylic oxides is achieved by intercepting palladium π-allyl complexes. The interconversion of palladium complexes results in the total synthesis of MK 7607, cyathiformine B type, streptol, and a new cyclitol.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201410228_sm_miscellaneous_information.pdf4.5 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1The number of existing carbasugars is reportedly more than 140, see:
- 1aO. Arjona, A. M. Gomez, J. C. Lopez, J. Plumet, Chem. Rev. 2007, 107, 1919–2036;
- 1bY. Kobayashi, Glycoscience (Eds.: ), Springer, Heidelberg, 2008, pp. 1913–1997; carbasugars amenable to the reported chemistry include rancinamycin I–IV, gabosine A–O, COTC, nigrospoxydon C, epoxydine A–B, cyanoformate A–C, pericosine A–E, piperonol A and B, uvacalol A–K, phomoxin A–C, and lincitol A and B.
10.1007/978-3-540-30429-6_49 Google Scholar
- 2
- 2aJ. Tsuji, H. Kataoka, Y. Kobayashi, Tetrahedron Lett. 1981, 22, 2575–2578;
- 2bB. M. Trost, G. A. Molander, J. Am. Chem. Soc. 1981, 103, 5969–5972; for in-depth reviews of asymmetric allylic alkylations, see:
- 2cB. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395–422;
- 2dB. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921–2943.
- 3For additional examples of vinyl oxides by Trost and coworkers, see:
- 3aB. M. Trost, R. C. Bunt, R. C. Lemoine, T. L. Calkins, J. Am. Chem. Soc. 2000, 122, 5968–5976;
- 3bB. M. Trost, C. Jiang, J. Am. Chem. Soc. 2001, 123, 12907–12908.
- 4For recent reviews of divergent and regioselective reactions with chiral substrates, see:
- 4aL. C. Miller, R. Sarpong, Chem. Soc. Rev. 2011, 40, 4550–4562;
- 4bR. R. Kumar, B. H. Kagan, Adv. Synth. Catal. 2010, 352, 231–242.
- 5D. L. Hughes, M. Palucki, N. Yasuda, R. A. Reamer, P. J. Reider, J. Org. Chem. 2002, 67, 2762–2768.
- 6
- 6aT. Hayashi, A. Yamamoto, Y. Ito, J. Chem. Soc. Chem. Commun. 1986, 1090–1092;
- 6bO. Loiseleur, M. C. Elliott, P. von Matt, A. Pfaltz, Helv. Chim. Acta 2000, 83, 2287–2294;
- 6cH. Daimon, R. Ogawa, S. Itagaki, I. Shimizu, Chem. Lett. 2004, 33, 1222–1223;
- 6dG. R. Cook, S. Sankaranarayanan, Org. Lett. 2001, 3, 3531–3533;
- 6eO. Jacquet, J. Y. Legros, M. Coliboeuf, J.-C. Fiaud, Tetrahedron 2008, 64, 6530–6536.
- 7For the initial discovery and application of the dpen ligand, see: B. M. Trost, D. L. Van Vranken, C. Bingel, J. Am. Chem. Soc. 1992, 114, 9327–9343.
- 8S. Masamune, W. Choy, J. S. Petersen, L. R. Sita, Angew. Chem. Int. Ed. Engl. 1985, 24, 1–30; Angew. Chem. 1985, 97, 1–31.
- 9B. M. Trost, J. L. Guzner, O. Dirat, Y. H. Rhee, J. Am. Chem. Soc. 2002, 124, 10396–10415.
- 10See the Supporting Information for details.
- 11
- 11aC. P. Butts, E. Fiali, G. C. Lloyd-Jones, P. Norrby, D. A. Sale, Y. Schramm, J. Am. Chem. Soc. 2009, 131, 9945–9957;
- 11bG. C. Lloyd-Jones, S. C. Stephen, I. J. S. Fairlamb, A. Martorell, B. Dominguez, P. M. Tomlin, M. Murray, J. C. Fernandez, T. Riis-Johannessen, T. Guerziz, Pure Appl. Chem. 2004, 76, 589–601.
- 12Oxide 8 can be prepared in seven steps which are based on:
- 12aS. A. Bowles, M. M. Campbell, M. Sainsbury, G. M. Davies, Tetrahedron 1990, 46, 3981–3992;
- 12bY. Usami, K. Suzuki, K. Mizuki, H. Ichikawa, M. Arimoto, Org. Biomol. Chem. 2009, 7, 315–318;
- 12cM. M. Campbell, A. D. Kaye, M. Sainsbury, R. Yavarzadeh, Tetrahedron 1984, 40, 2461–2470.
- 13The isomerization of π-allyl complexes through Pd0 attack as reported by the groups of Bäckvall and Murahashi is instructive, see:
- 13aK. L. Granberg, J. E. Bäckvall, J. Am. Chem. Soc. 1992, 114, 6858–6863;
- 13bJ. E. Bäckvall, K. L. Granberg, A. Heumann, Isr. J. Chem. 1991, 31, 17–24;
- 13cS. Murahashi, Y. Taniguchi, Y. Imada, Y. Tanigawa, J. Org. Chem. 1989, 54, 3292–3303.
- 14M. B. Banwell, N. Haddad, T. Hudlicky, T. C. Nugent, M. F. Mackay, S. L. Richards, J. Chem. Soc. Perkin Trans. 1 1997, 1779–1792.
- 15Initial isolation of the regiodivergent products provided 20 in 16 % yield with products 19 and 21 as a mixture in 39 % yield. An extended 1H NMR analysis determined the ratio of these last products to be 14 % 19 and 25 % 21. Yields and e.r. data for additional runs may be found in the Supporting Information.
- 16A. Isogai, S. Sakuda, J. Nakayama, S. Watanabe, A. Suzuki, Agric. Biol. Chem. 1987, 51, 2277–2279.
- 17A. Arnone, R. Cardillo, G. Nasini, O. V. de Pava, Tetrahedron 1993, 49, 7251–7258.
- 18Y. Nobuji, C. Noriko, M. Takashi, U. Shigeru, H. Kenzou, I. Michiaki, Jpn. Koka Tokkyo Koho, JP, 06306000, 1994.
- 19Racemic oxide 27 can be prepared in seven steps; see Reference [12].
- 20Enantiopure oxide 27 can be prepared in five steps diverging from the preparation of oxide 8, see: Y. Usami, M. Ohsugi, K. Mizuki, H. Ichikawa, M. Arimoto, Org. Lett. 2009, 11, 2699–2701.
- 21According to its structure, compound 31 may be a member of the rancinamycin family or the pericosines (desmethyl).
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.