Elementary Steps of Iron Catalysis: Exploring the Links between Iron Alkyl and Iron Olefin Complexes for their Relevance in CH Activation and CC Bond Formation†
Dr. Alicia Casitas
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Search for more papers by this authorHelga Krause
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Search for more papers by this authorDr. Richard Goddard
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Search for more papers by this authorCorresponding Author
Prof. Alois Fürstner
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)Search for more papers by this authorDr. Alicia Casitas
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Search for more papers by this authorHelga Krause
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Search for more papers by this authorDr. Richard Goddard
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Search for more papers by this authorCorresponding Author
Prof. Alois Fürstner
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr (Germany)Search for more papers by this authorGenerous financial support by the MPG, the Fundación Ramón Areces (fellowship for A.C.) and SusChemSys (Ziel 2 Programm NRW 2007–2013) is gratefully acknowledged. We thank Dr. C. Farès for recording the low-temperature NMR spectra and for helpful discussions.
Abstract
The alkylation of complexes 2 and 7 with Grignard reagents containing β-hydrogen atoms is a process of considerable relevance for the understanding of C–H activation as well as C–C bond formation mediated by low-valent iron species. Specifically, reaction of 2 with EtMgBr under an ethylene atmosphere affords the bis-ethylene complex 1 which is an active precatalyst for prototype [2+2+2] cycloaddition reactions and a valuable probe for mechanistic studies. This aspect is illustrated by its conversion into the bis-alkyne complex 6 as an unprecedented representation of a cycloaddition catalyst loaded with two substrates molecules. On the other hand, alkylation of 2 with 1 equivalent of cyclohexylmagnesium bromide furnished the unique iron alkyl species 11 with a 14-electron count, which has no less than four β-H atoms but is nevertheless stable at low temperature against β-hydride elimination. In contrast, the exhaustive alkylation of 1 with cyclohexylmagnesium bromide triggers two consecutive C–H activation reactions mediated by a single iron center. The resulting complex has a diene dihydride character in solution (15), whereas its structure in the solid state is more consistent with an η3-allyl iron hydride rendition featuring an additional agostic interaction (14). Finally, the preparation of the cyclopentadienyl iron complex 25 illustrates how an iron-mediated C–H activation cascade can be coaxed to induce a stereoselective CC bond formation. The structures of all relevant new iron complexes in the solid state are presented.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201410069_sm_miscellaneous_information.pdf1.5 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Hoberg, K. Jenni, K. Angermund, C. Krüger, Angew. Chem. Int. Ed. Engl. 1987, 26, 153–155; Angew. Chem. 1987, 99, 141–142;
- 1bH. Hoberg, K. Jenni, C. Krüger, E. Raabe, Angew. Chem. Int. Ed. Engl. 1986, 25, 810–811; Angew. Chem. 1986, 98, 819–820;
- 1cH. Hoberg, K. Jenni, J. Organomet. Chem. 1986, 301, C 59–C61;
- 1dH. Hoberg, K. Jenni, E. Raabe, C. Krüger, G. Schroth, J. Organomet. Chem. 1987, 320, 325–338;
- 1eH. Hoberg, K. Jenni, J. Organomet. Chem. 1987, 322, 193–201.
- 2A. J. Frings, Dissertation, Ruhr-Universität Bochum, 1988.
- 3K. Jonas, Pure Appl. Chem. 1990, 62, 1169–1174.
- 4See also:
- 4aJ. R. Bleeke, R. J. Wittenbrink, J. Organomet. Chem. 1991, 405, 121–132;
- 4bH. Kubo, M. Hirano, S. Komiya, J. Organomet. Chem. 1998, 556, 89–95.
- 5
- 5aFor a related (aminocarbene)iron(0) diene complexes, see: H. Zhang, Z. Ouyang, Y. Liu, Q. Zhang, L. Wang, L. Deng, Angew. Chem. Int. Ed. 2014, 53, 8432–8436; Angew. Chem. 2014, 126, 8572–8576;
- 5bfor a bis-carbene iron(0) arene complex, see: B. Blom, G. Tan, S. Enthaler, S. Inoue, J. D. Epping, M. Driess, J. Am. Chem. Soc. 2013, 135, 18108–18120.
- 6Stoichiometric reactions showed such complexes to be nucleophilic at carbon, cf. Ref. [1].
- 7
- 7aS. Geier, R. Goddard, S. Holle, P. W. Jolly, C. Krüger, F. Lutz, Organometallics 1997, 16, 1612–1620;
- 7bB. Gabor, R. Goddard, S. Holle, P. W. Jolly, C. Krüger, R. Mynott, W. Wisniewski, Z. Naturforsch. B 1995, 50, 503–513;
- 7cB. Gabor, S. Holle, P. W. Jolly, R. Mynott, J. Organomet. Chem. 1994, 466, 201–209;
- 7dP. W. Jolly, C. Kopiske, C. Krüger, A. Limberg, Organometallics 1995, 14, 1885–1892.
- 8Review: C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293–1314.
- 9
- 9a Iron Catalysis in Organic Chemistry: Reactions and Applications (Ed.: ), Wiley-VCH, Weinheim, 2008;
- 9bE. Nakamura, Y. Yoshikai, J. Org. Chem. 2010, 75, 6061–6067.
- 10A. Fürstner, K. Majima, R. Martín, H. Krause, E. Kattnig, R. Goddard, C. W. Lehmann, J. Am. Chem. Soc. 2008, 130, 1992–2004.
- 11aA. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C. W. Lehmann, J. Am. Chem. Soc. 2008, 130, 8773–8787;
- 11bA. Fürstner, H. Krause, C. W. Lehmann, Angew. Chem. Int. Ed. 2006, 45, 440–444; Angew. Chem. 2006, 118, 454–458.
- 12B. D. Sherry, A. Fürstner, Chem. Commun. 2009, 7116–7118.
- 13B. D. Sherry, A. Fürstner, Acc. Chem. Res. 2008, 41, 1500–1511.
- 14In addition to the structures of complexes 6, 11, 14, and 25 shown in the text, the structures of complexes 1, 2, and 20 in the solid state are depicted in the Supporting Information. CCDC 1026194 (1), CCDC 1026195 (6), CCDC 1026196 (25), CCDC 1026197 (20), CCDC 1026198 (14), CCDC 1026199 (11), CCDC 1026200 (2) contain the supporting crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 15The analogous complex 18 with a dippe ligand prepared from 7 and EtMgBr is less stable but well behaved when used immediately after formation, see Scheme 4.
- 16The CC bonds are elongated from 1.33 Å in free ethylene to 1.412(2) and 1.416(2) Å in complex 1; the structure of 1 has been briefly described in: K. Angermund, S. Geier, P. W. Jolly, M. Kessler, C. Krüger, F. Lutz, Organometallics 1998, 17, 2399–2403.
- 17Stabilization of Fe0 by alkene ligands is not needed when crowded π-accepting (alkyl)(amino)carbenes ligands are used, see: G. Ung, J. Rittle, M. Soleilhavoup, G. Bertrand, J. C. Peters, Angew. Chem. Int. Ed. 2014, 53, 8427–8431; Angew. Chem. 2014, 126, 8567–8571.
- 18Y. Yu, J. M. Smith, C. J. Flaschenriem, P. L. Holland, Inorg. Chem. 2006, 45, 5742–5751.
- 19For iron-catalyzed reactions of 1,3-diene- or diene-containing entities, see the following and literature therein:
- 19aJ. P. Genet, J. Ficini, Tetrahedron Lett. 1979, 20, 1499–1502;
10.1016/S0040-4039(01)86189-X Google Scholar
- 19bH. tom Dieck, R. Diercks, Angew. Chem. Int. Ed. Engl. 1983, 22, 778–779;
10.1002/anie.198307781 Google ScholarAngew. Chem. 1983, 95, 801–802;
- 19cJ. M. Takacs, P. W. Newsome, C. Kuehn, F. Takusagawa, Tetrahedron 1990, 46, 5507–5522;
- 19dJ. Raynaud, J. Y. Wu, T. Ritter, Angew. Chem. Int. Ed. 2012, 51, 11805–11808; Angew. Chem. 2012, 124, 11975–11978;
- 19eC.-L. Sun, A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 13071–13075; Angew. Chem. 2013, 125, 13309–13313.
- 20
- 20aC. X. Wang, B. S. Wan, Chin. Sci. Bull. 2012, 57, 2338–2351;
- 20bG. Hilt, J. Janikowsi, in Iron Catalysis in Organic Chemistry: Reactions and Applications (Ed.: ), Wiley-VCH, Weinheim, 2008, pp. 245–269.
10.1002/9783527623273.ch9 Google Scholar
- 21
- 21aC. Wang, X. Li, F. Wu, B. Wan, Angew. Chem. Int. Ed. 2011, 50, 7162–7166; Angew. Chem. 2011, 123, 7300–7304;
- 21bC. Wang, D. Wang, F. Xu, B. Pan, B. Wan, J. Org. Chem. 2013, 78, 3065–3072.
- 22For other defined iron precatalysts in [2+2+2] cycloadditions, see Ref. [10] and the following:
- 22aV. Richard, M. Ipouck, D. S. Mérel, S. Gaillard, R. J. Whitby, B. Witulski, J.-L. Renaud, Chem. Commun. 2014, 50, 593–595;
- 22bR. Wolf, N. Ghavtadze, K. Weber, E.-M. Schnöckelborg, B. de Bruin, A. W. Ehlers, K. Lammertsma, Dalton Trans. 2010, 39, 1453–1456;
- 22cK. Ferré, L. Toupet, V. Guerchais, Organometallics 2002, 21, 2578–2580;
- 22dF. Knoch, F. Kremer, U. Schmidt, U. Zenneck, P. Le Floch, F. Mathey, Organometallics 1996, 15, 2713–2719.
- 23C. Breschi, L. Piparo, P. Pertici, A. M. Caporusso, G. Vitulli, J. Organomet. Chem. 2000, 607, 57–63.
- 24Reaction of tolane with the related olefin complex [Cp*Fe(C2H4)2] afforded a tetraphenyl butadienyl complex by reductive elimination of a putative ferrole intermediate, cf. Ref. [10].
- 25For a review on arene synthesis via metallacyclopentadienyl complexes, see: L. Zhou, S. Li, K. Kanno, T. Takahashi, Heterocycles 2010, 80, 725–738.
- 26For less-canonical iron complexes isolated from (stoichiometric) cyclotrimerizations, see:
- 26aK. Jonas, G. Koepe, L. Schieferstein, R. Mynott, C. Krüger, Y.-H. Tsay, Angew. Chem. Int. Ed. Engl. 1983, 22, 620–621; Angew. Chem. 1983, 95, 637–638;
- 26bU. Zenneck, Angew. Chem. Int. Ed. Engl. 1990, 29, 126–137; Angew. Chem. 1990, 102, 171–182.
- 27A search in the Cambridge Crystallographic Data Base gave no hits for mononuclear Fe0 bis(alkyne)complexes.
- 28As tolane is tightly bound, 6 is only a poor catalyst for the cyclotrimerization of 3-hexyne.
- 29A. Mavridis, I. Moustakali-Mavridis, Acta Crystallogr. Sect. B 1977, 33, 3612–3615.
- 30A. R. Hermes, G. S. Girolami, Organometallics 1987, 6, 763–768.
- 31Such a mechanism has been invoked in the preparation of low-valent iron catalysts for cross coupling, see:
- 31aA. Fürstner, A. Leitner, M. Méndez, H. Krause, J. Am. Chem. Soc. 2002, 124, 13856–13863;
- 31bA. Fürstner, A. Leitner, Angew. Chem. Int. Ed. 2002, 41, 609–612; Angew. Chem. 2002, 114, 632–635;
- 31cB. Scheiper, M. Bonnekessel, H. Krause, A. Fürstner, J. Org. Chem. 2004, 69, 3943–3949;
- 31dG. Seidel, D. Laurich, A. Fürstner, J. Org. Chem. 2004, 69, 3950–3952.
- 32For the analogous tetrahedral [bis(diethylphosphino)ethane]iron(mesityl)2 complex and it use as catalyst, see: C.-L. Sun, H. Krause, A. Fürstner, Adv. Synth. Catal. 2014, 356, 1281–1291.
- 33We cannot firmly rule out a successive pathway, in which an initial β-hydride elimination from a tetrahedral 14-electron complex of type [L2Fe(Et)Cl] precedes the replacement of the second chloride by an ethyl group; yet, putative [L2Fe(Et)Cl] must fulfill the exact same conditions for β-hydride elimination as the diethyl complex 9.
- 34Spin crossover was recently proposed to explain β-hydride elimination of trigonal high-spin FeII alkyl complexes bearing diketoiminato ligands; for an in-depth discussion, see: S. M. Bellows, T. R. Cundari, P. L. Holland, Organometallics 2013, 32, 4741–4751.
- 35If the formation of square-planar complexes is geometrically prohibited, alkyl iron complexes become thermally robust, cf. Ref. [34] and the following: N. Shirasawa, T. T. Nguyet, S. Hikichi, Y. Moro-oka, M. Akita, Organometallics 2001, 20, 3582–3598.
- 36For metastable iron complexes with other ligand sets and coordination geometries which contain alkyl ligands with β-H atoms, see:
- 36aJ. Vela, S. Vaddadi, T. R. Cundari, J. M. Smith, E. A. Gregory, R. J. Lachiotte, C. J. Flaschenriem, P. L. Holland, Organometallics 2004, 23, 5226–5239;
- 36bR. J. Trovitch, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2008, 130, 11631–11640.
- 37For the concept, see:
- 37aD. Schröder, S. Shaik, H. Schwarz, Acc. Chem. Res. 2000, 33, 139–145;
- 37bJ. N. Harvey, R. Poli, K. M. Smith, Coord. Chem. Rev. 2003, 238–239, 347–361.
- 38This result is remarkable in that [(dmpe)2Fe] (dmpe=bis(dimethylphosphino)ethane] had previously been shown to cause the CH activation of the olefinic rather than the allylic CH bond of cyclopentene, see: M. V. Baker, L. D. Field, J. Am. Chem. Soc. 1986, 108, 7433–7434.
- 39M. Brookhart, M. L. H. Green, G. Parkin, Proc. Natl. Acad. Sci. USA 2007, 104, 6908–6914.
- 40
- 40aR. K. Brown, J. M. Williams, A. J. Schultz, G. D. Stucky, S. D. Ittel, R. L. Harlow, J. Am. Chem. Soc. 1980, 102, 981–987;
- 40bS. D. Ittel, F. A. Van-Catledge, C. A. Tolman, J. P. Jesson, J. Am. Chem. Soc. 1978, 100, 1317–1318.
- 41M. Brookhart, T. H. Whitesides, J. M. Crockett, Inorg. Chem. 1976, 15, 1550–1554.
- 42For the reversible allylic CH activation of propene in the coordination sphere of [Fe(CO)]4 upon photochemical activation, see: T. M. Barnhart, J. De Felippis, R. J. McMahon, Angew. Chem. Int. Ed. Engl. 1993, 32, 1073–1074; Angew. Chem. 1993, 105, 1134–1136.
- 43R. Benn, H. Brenneke, A. Frings, H. Lehmkuhl, G. Mehler, A. Rufinska, T. Wildt, J. Am. Chem. Soc. 1988, 110, 5661–5668.
- 44For a pertinent example of allylic C–H activation of cyclohexene followed by CC bond formation with the aid of a catalyst formed in situ from a diphosphine, Fe(acac)3, PhMgBr, and mesityl iodide, see: M. Sekine, L. Ilies, E. Nakamura, Org. Lett. 2013, 15, 714–717.
- 45A. Fürstner, Angew. Chem. Int. Ed. 2014, 53, 8587–8598; Angew. Chem. 2014, 126, 8728–8740.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.