Intermolecular Dynamic Kinetic Resolution Cooperatively Catalyzed by an N-Heterocyclic Carbene and a Lewis Acid†
Zijun Wu
Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 (China)
Search for more papers by this authorFangyi Li
Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jian Wang
Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 (China)
Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 (China)Search for more papers by this authorZijun Wu
Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 (China)
Search for more papers by this authorFangyi Li
Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 (China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jian Wang
Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 (China)
Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084 (China)Search for more papers by this authorThe project described was supported by a grant from the Tsinghua University and the “Thousand Plan” Youth program of China.
Abstract
The ubiquitous structure of δ-lactones makes the development of new methods for their enantioselective and stereoselective synthesis an important ongoing challenge. The intermolecular dynamic kinetic resolution (DKR) of β-halo-α-ketoesters cooperatively catalyzed by an N-heterocyclic carbene and a Lewis acid generates two contiguous stereocenters with remarkable diastereoselectivity through an oxidation/lactonization sequence.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201410030_sm_miscellaneous_information.pdf2.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Pellissier, Chirality from Dynamic Kinetic Resolution, Royal Society of Chemistry, Cambridge, 2011;
10.1039/9781849732673 Google Scholar
- 1bH. Pellissier, Tetrahedron 2011, 67, 3769.
- 2For reviews and selected recent examples of traditional kinetic resolutions, see:
- 2aH. B. Kagan, J. C. Fiaud, Topics in Stereochemistry, Wiley, 1988, p. 249;
10.1002/9780470147276.ch4 Google Scholar
- 2bJ. E. Taylor, S. D. Bull, J. M. J. Williams, Chem. Soc. Rev. 2012, 41, 2109;
- 2cA. Peschiulli, B. Procuranti, C. J. O′Connor, S. J. Connon, Nat. Chem. 2010, 2, 380;
- 2dI. Čorić, B. List, Nature 2012, 483, 315;
- 2eM. Binanzer, S.-Y. Hsieh, J. W. Bode, J. Am. Chem. Soc. 2011, 133, 19698;
- 2fS. De Sarkar, A. Biswas, C. H. Song, A. Studer, Synthesis 2011, 1974;
- 2gK. E. Ozboya, T. Rovis, Chem. Sci. 2011, 2, 1835.
- 3
- 3aR. Noyori, M. Tokunaga, M. Kitamura, Bull. Chem. Soc. Jpn. 1995, 68, 36;
- 3bF. F. Huerta, A. B. E. Minidis, J. E. Bäckvall, Chem. Soc. Rev. 2001, 30, 321;
- 3cS.-K. Tian, Y. Chen, J. Hang, L. Tang, P. McDaid, L. Deng, Acc. Chem. Res. 2004, 37, 621.
- 4For selected organocatalytic DKRs, see:
- 4aJ. Liang, J. C. Ruble, G. C. Fu, J. Org. Chem. 1998, 63, 3154;
- 4bL. Tang, L. Deng, J. Am. Chem. Soc. 2002, 124, 2870;
- 4cM. P. Lalonde, Y. Chen, E. N. Jacobsen, Angew. Chem. Int. Ed. 2006, 45, 6366; Angew. Chem. 2006, 118, 6514;
- 4dX. Yang, V. B. Birman, Angew. Chem. Int. Ed. 2011, 50, 5553; Angew. Chem. 2011, 123, 5667;
- 4eS. Hoffmann, M. Nicoletti, B. List, J. Am. Chem. Soc. 2006, 128, 13074;
- 4fJ. W. Evans, M. B. Fierman, S. J. Miller, J. A. Ellman, J. Am. Chem. Soc. 2004, 126, 8134;
- 4gJ. L. Gustafson, D. Lim, S. J. Miller, Science 2010, 328, 1251.
- 5For selected recent examples of metal- and/or enzyme-catalyzed DKRs, see:
- 5aB. M. Trost, N. G. Andersen, J. Am. Chem. Soc. 2002, 124, 14320;
- 5bB. Martín-Matute, M. Edin, K. Bogár, F. B. Kaynak, J.-E. Bäckvall, J. Am. Chem. Soc. 2005, 127, 8817;
- 5cM. P. Rainka, J. E. Milne, S. L. Buchwald, Angew. Chem. Int. Ed. 2005, 44, 6177; Angew. Chem. 2005, 117, 6333;
- 5dJ. Paetzold, J.-E. Bäckvall, J. Am. Chem. Soc. 2005, 127, 17620;
- 5eM. J. Kim, Y. Chung, Y. Choi, H. Lee, D. Kim, J. Park, J. Am. Chem. Soc. 2003, 125, 11494.
- 6For selected reviews and examples of NHC catalysis, see:
- 6aD. Enders, T. Balensiefer, Acc. Chem. Res. 2004, 37, 534;
- 6bK. Zeitler, Angew. Chem. Int. Ed. 2005, 44, 7506; Angew. Chem. 2005, 117, 7674;
- 6cD. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606;
- 6dN. Marion, S. Diez-Gonzalez, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2988; Angew. Chem. 2007, 119, 3046;
- 6eV. Nair, S. Vellalath, B. P. Babu, Chem. Soc. Rev. 2008, 37, 2691;
- 6fT. Rovis, Chem. Lett. 2008, 37, 2;
- 6gJ. L. Moore, T. Rovis, Top. Curr. Chem. 2010, 291, 77;
- 6hA. T. Biju, N. Kuhl, F. Glorius, Acc. Chem. Res. 2011, 44, 1182;
- 6iV. Nair, R. S. Menon, A. T. Biju, C. R. Sinu, R. R. Paul, A. Jose, V. Sreekumar, Chem. Soc. Rev. 2011, 40, 5336;
- 6jZ. Q. Rong, W. Zhang, G. Q. Yang, S.-L. You, Curr. Org. Chem. 2011, 15, 3077;
- 6kH. U. Vora, T. Rovis, Aldrichimica Acta 2011, 44, 3;
- 6lD. T. Cohen, K. A. Scheidt, Chem. Sci. 2012, 3, 53;
- 6mA. Grossmann, D. Enders, Angew. Chem. Int. Ed. 2012, 51, 314; Angew. Chem. 2012, 124, 320.
- 7M. Wang, Z. Huang, J. Xu, Y. R. Chi, J. Am. Chem. Soc. 2014, 136, 1214.
- 8
- 8aS. Lu, S. B. Poh, Y. Zhao, Angew. Chem. Int. Ed. 2014, 53, 11041; Angew. Chem. 2014, 126, 11221;
- 8bS. Lu, S. B. Poh, W.-Y. Siau, Angew. Chem. Int. Ed. 2013, 52, 1731; Angew. Chem. 2013, 125, 1775.
- 9
- 9aD. T. Cohen, C. C. Eichman, E. M. Phillips, E. R. Zarefsky, K. A. Scheidt, Angew. Chem. Int. Ed. 2012, 51, 7309; Angew. Chem. 2012, 124, 7421; For full article, see: R. C. Johnston, D. T. Cohen, C. C. Eichman, K. A. Scheidt, P. H.-Y. Cheong, Chem. Sci. 2014, 5, 1974.
- 10During the revision of this manuscript, Goodman and Johnson reported a similar intermolecular DKR reaction. See: C. G. Goodman, J. S. Johnson, J. Am. Chem. Soc. 2014, DOI: .
- 11For selected examples of oxidative NHC catalysis to form enolate or vinyl enolate intermediates, see:
- 11aB. E. Marki, K. A. Scheidt, Org. Lett. 2008, 10, 4331;
- 11bX. Zhao, K. E. Ruhl, T. Rovis, Angew. Chem. Int. Ed. 2012, 51, 12330; Angew. Chem. 2012, 124, 12496;
- 11cJ. Mo, R. Yang, X. Chen, B. Tiwari, Y. R. Chi, Org. Lett. 2013, 15, 50;
- 11dJ. Mo, L. Shen, Y. R. Chi, Angew. Chem. Int. Ed. 2013, 52, 8588; Angew. Chem. 2013, 125, 8750;
- 11eS. De Sarkar, A. Studer, Angew. Chem. Int. Ed. 2010, 49, 9266; Angew. Chem. 2010, 122, 9452;
- 11fZ.-Q. Rong, M.-Q. Jia, S.-L. You, Org. Lett. 2011, 13, 4080;
- 11gA. G. Kravina, J. Mahatthananchai, J. W. Bode, Angew. Chem. Int. Ed. 2012, 51, 9433; Angew. Chem. 2012, 124, 9568.
- 12For NHC-catalyzed oxidative γ-addition of enals, see:
- 12aJ. Mo, X. Chen, Y. R. Chi, J. Am. Chem. Soc. 2012, 134, 8810;
- 12bT. S. Zhu, P. C. Zheng, C. L. Mou, B.-A. Song, Y. R. Chi, Nat. Commun. 2014, DOI: ;
- 12cX. K. Chen, S. Yang, B.-A. Song, Y. R. Chi, Angew. Chem. Int. Ed. 2013, 52, 11134; Angew. Chem. 2013, 125, 11340; and Ref. [7].
- 13
- 13aN. Gunde-Cimerman, A. Cimerman, Exp. Mycol. 1995, 19, 1;
- 13bA. J. Weinheimer, C. W. J. Chang, J. A. Matson, Fortschr. Chem. Org. Naturst. 1979, 42, 285;
- 13cJ. E. McMurry, R. G. Dushin, J. Am. Chem. Soc. 1990, 112, 6942;
- 13dI. Paterson, S. M. Dalby, J. C. Roberts, G. J. Naylor, E. A. Guzmán, R. Isbrucker, T. P. Pitts, P. Linley, D. Divlianska, J. K. Reed, A. E. Wright, Angew. Chem. Int. Ed. 2011, 50, 3219; Angew. Chem. 2011, 123, 3277.
- 14
- 14aB. Cardinal-David, D. E. A. Raup, K. A. Scheidt, J. Am. Chem. Soc. 2010, 132, 5345;
- 14bD. E. A. Raup, B. Cardinal-David, D. Holte, K. A. Scheidt, Nat. Chem. 2010, 2, 766;
- 14cJ. Dugal-Tessier, E. A. O’Bryan, T. B. H. Schroeder, D. T. Cohen, K. A. Scheidt, Angew. Chem. Int. Ed. 2012, 51, 4963; Angew. Chem. 2012, 124, 5047;
- 14dE. M. Phillips, M. Riedrich, K. A. Scheidt, J. Am. Chem. Soc. 2010, 132, 13179.
- 15CCDC 1019722 (3 ad) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 16A concerted pathway for this transformation (from IV to 3 a) cannot be ruled out.
- 17S. Kobayashi, M. Sugiura, H. Kitagawa, W. W.-L. Lam, Chem. Rev. 2002, 102, 2227.
- 18To confirm this statement, a background reaction was conducted without Sc(OTf)3 and with toluene as solvent. As indicated in Table 1, entry 16, the ee value of 79 % demonstrated that the potential coordination of Sc(OTf)3 played a vital role in the chiral induction.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.