Funktionsmaterialien mit Cellulose-basierten Flüssigkristall-Templaten
Dr. Michael Giese
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Kanada)
Search for more papers by this authorDr. Lina K. Blusch
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Kanada)
Search for more papers by this authorDr. Mostofa K. Khan
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Kanada)
Search for more papers by this authorCorresponding Author
Prof. Mark J. MacLachlan
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Kanada)
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Kanada)Search for more papers by this authorDr. Michael Giese
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Kanada)
Search for more papers by this authorDr. Lina K. Blusch
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Kanada)
Search for more papers by this authorDr. Mostofa K. Khan
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Kanada)
Search for more papers by this authorCorresponding Author
Prof. Mark J. MacLachlan
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Kanada)
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Kanada)Search for more papers by this authorAbstract
Cellulose-Nanokristalle (cellulose nanocrystals, CNCs) sind seit über 50 Jahren bekannt, gewinnen aber erst heute große Aufmerksamkeit aufgrund ihrer Eigenschaften wie hoher spezifischer Festigkeit, hohen Elastizitätsmoduls, großer Oberfläche und faszinierender optischer Eigenschaften. Erst kürzlich wurde ihr Potenzial als supramolekulare Template erkannt, bei denen ihr Selbstorganisationsverhalten in wässrigen Dispersionen in Gegenwart geeigneter Vorstufen genutzt wird. Die Kombination von Mesoporosität, photonischen Eigenschaften und chiral-nematischer Ordnung der Funktionsmaterialien, die als freistehende Filme verfügbar sind, führte zu zahlreichen vielversprechenden Entdeckungen. Unser Aufsatz fasst die Verwendung von Cellulosederivaten, besonders von CNCs, als neuen Templaten zusammen und gibt eine Übersicht über die aktuellen Entwicklungen im Kontext neuer Funktionsmaterialien.
References
- 1W. Lu, C. M. Lieber, Nat. Mater. 2007, 6, 841–850.
- 2Y. Fang, B. M. Phillips, K. Askar, B. Choi, P. Jiang, B. Jiang, J. Mater. Chem. C 2013, 1, 6031–6047.
- 3E. Burstein, M. L. Cohen, D. L. Mills, P. J. Stiles, Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures, Elsevier, London, 2006.
- 4Q. Zhang, E. Uchaker, S. L. Candelaria, G. Cao, Chem. Soc. Rev. 2013, 42, 3127–3171.
- 5
- 5aJ. Wang, Electroanalysis 2005, 17, 7–14;
- 5bJ. J. Gooding, Electrochim. Acta 2005, 50, 3049–3060.
- 6A. Huczko, Appl. Phys. A 2000, 70, 365–376.
- 7
- 7aP. D. H.-G. Rubahn, Basics of Nanotechnology, Wiley-VCH, Weinheim, 2008;
- 7bG. A. Ozin, Adv. Mater. 1992, 4, 612–649.
- 8Y. S. Lee, Self-Assembly and Nanotechnology: A Force Balance Approach, Wiley, Hoboken, 2008.
10.1002/9780470292525 Google Scholar
- 9K. Zhu, J. Sun, H. Zhang, J. Liu, Y. Wang, J. Nat. Gas Chem. 2012, 21, 215–232.
- 10
- 10aL. F. Giraldo, B. L. López, L. Pérez, S. Urrego, L. Sierra, M. Mesa, Macromol. Symp. 2007, 258, 129–141;
- 10bA. Thomas, F. Goettmann, M. Antonietti, Chem. Mater. 2008, 20, 738–755.
- 11N. Pal, A. Bhaumik, Adv. Colloid Interface Sci. 2013, 189–190, 21–41.
- 12
- 12aD. Papapostolou, S. Howorka, Mol. BioSyst. 2009, 5, 723–732;
- 12bS. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 2004, 429, 281–284;
- 12cB. Liu, Y. Yao, S. Che, Angew. Chem. Int. Ed. 2013, 52, 14186–14190; Angew. Chem. 2013, 125, 14436–14440;
- 12dZ. Huang, Y. Yao, S. Che, Chem. Eur. J. 2014, 20, 3273–3276;
- 12eY. Yao, D. Wang, L. Han, S. Che, Chem. Eur. J. 2013, 19, 15489–15492.
- 13
- 13aD. G. Shchukin, A. A. Yaremchenko, M. G. S. Ferreira, V. V. Kharton, Chem. Mater. 2005, 17, 5124–5129;
- 13bT.-Y. Ma, L. Liu, Z.-Y. Yuan, Chem. Soc. Rev. 2013, 42, 3977–4003.
- 14
- 14aC. G. Göltner, M. Antonietti, Adv. Mater. 1997, 9, 431–436;
- 14bL. Han, S. Che, Chem. Soc. Rev. 2013, 42, 3740–3752;
- 14cB. J. Melde, B. T. Holland, C. F. Blanford, A. Stein, Chem. Mater. 1999, 11, 3302–3308;
- 14dQ. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147–1160;
- 14eH. Yang, N. Coombs, I. Sokolov, G. A. Ozin, Nature 1996, 381, 589–592;
- 14fG. S. Attard, J. C. Glyde, C. G. Goltner, Nature 1995, 378, 366–368.
- 15G. A. Jeffrey, Acc. Chem. Res. 1986, 19, 168–173.
- 16R. Dabrowski, P. Kula, J. Herman, Crystals 2013, 3, 443–482.
- 17G. J. T. Tiddy, Phys. Rep. 1980, 57, 1–46.
- 18A. M. Donald, A. H. Windle, S. Hanna, Liquid Crystalline Polymers, Cambridge University Press, Cambridge, 2006.
10.1017/CBO9780511616044 Google Scholar
- 19
- 19aI. W. Hamley, Soft Matter 2010, 6, 1863–1871;
- 19bT. Z. Rizvi, J. Mol. Liq. 2003, 106, 43–53.
- 20
- 20aF. C. Bawden, N. W. Pirie, J. D. Bernal, I. Fankuchen, Nature 1936, 138, 1051–1052;
- 20bZ. Dogic, S. Fraden, Phys. Rev. Lett. 1997, 78, 2417–2420;
- 20cZ. Dogic, S. Fraden, Langmuir 2000, 16, 7820–7824;
- 20dS.-W. Lee, B. M. Wood, A. M. Belcher, Langmuir 2003, 19, 1592–1598.
- 21I. Dierking, Textures of Liquid Crystals, Wiley-VCH, Weinheim, 2006.
- 22
- 22aM. Antonietti, Philos. Trans. R. Soc. London Ser. A 2006, 364, 2817–2840;
- 22bS. E. Friberg, C. C. Yang, R. Goubran, R. E. Partch, Langmuir 1991, 7, 1103–1106.
- 23H. K. Bisoyi, S. Kumar, Chem. Soc. Rev. 2011, 40, 306–319.
- 24G. N. Karanikolos, P. Alexandridis, R. Mallory, A. Petrout, T. J. Mountziaris, Nanotechnology 2005, 16, 2372–2380.
- 25A. C. Neville, Biology of Fibrous Composites: Development Beyound the Cell Membrane, Cambridge University Press, New York, 1993.
10.1017/CBO9780511601101 Google Scholar
- 26Y. Bouligand, Tissue Cell 1972, 4, 189–217.
- 27Y. Bouligand, V. Norris, Biochimie 2001, 83, 187–192.
- 28
- 28aP. Fratzl, Collagen: Structure and Mechanics, Springer, New York, 2010;
- 28bD. Eglin, G. Mosser, M.-M. Giraud-Guille, J. Livage, T. Coradin, Soft Matter 2005, 1, 129–131.
- 29D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Angew. Chem. Int. Ed. 2005, 44, 3358–3393; Angew. Chem. 2005, 117, 3422–3458.
- 30E. Dujardin, M. Blaseby, S. Mann, J. Mater. Chem. 2003, 13, 696–699.
- 31B. Alonso, E. Belamie, Angew. Chem. Int. Ed. 2010, 49, 8201–8204; Angew. Chem. 2010, 122, 8377–8380.
- 32E. Belamie, M. Y. Boltoeva, K. Yang, T. Cacciaguerra, B. Alonso, J. Mater. Chem. 2011, 21, 16997–17006.
- 33A. D. French, N. R. Bertoniere, R. M. Brown, H. Chanzy, D. G. Gray, K. Hattori, W. Glasser, Kirk-Othmer Encyclopedia of Chemical Technology, 5. Aufl. (Hrsg. A. Seidel), John Wiley & Sons Inc., New York, 2004.
- 34R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 2011, 40, 3941–3994.
- 35Y. Habibi, L. A. Lucia, O. J. Rojas, Chem. Rev. 2010, 110, 3479–3500.
- 36D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Angew. Chem. Int. Ed. 2011, 50, 5438–5466; Angew. Chem. 2011, 123, 5550–5580.
- 37
- 37aB. G. Rånby, Acta Chem. Scand. 1949, 3, 649–650;
- 37bB. G. Rånby, E. Ribi, Experientia 1950, 6, 12–14;
- 37cB. G. Rånby, Discuss. Faraday Soc. 1951, 11, 158–164.
10.1039/DF9511100158 Google Scholar
- 38B. L. Peng, N. Dhar, H. L. Liu, K. C. Tam, Can. J. Chem. Eng. 2011, 89, 1191–1206.
- 39J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, D. G. Gray, Int. J. Biol. Macromol. 1992, 14, 170–172.
- 40R. H. Marchessault, F. F. Morehead, N. M. Walter, Nature 1959, 184, 632–633.
- 41
- 41aJ. F. Revol, D. L. Godbout, D. G. Gray, (Pulp and Paper Research Institute of Canada), US05629055, 1997;
- 41bJ.-F. Revol, L. Godbout, D. G. Gray, J. Pulp Pap. Sci. 1998, 24, 146–149.
- 42K. E. Shopsowitz, H. Qi, W. Y. Hamad, M. J. MacLachlan, Nature 2010, 468, 422–425.
- 43W. Y. Hamad, T. Q. Hu, Can. J. Chem. Eng. 2010, 88, 392–402.
- 44G. von Freymann, V. Kitaev, B. V. Lotsch, G. A. Ozin, Chem. Soc. Rev. 2013, 42, 2528–2554.
- 45H. De Vries, Acta Crystallogr. 1951, 4, 219–226.
- 46X. M. Dong, T. Kimura, J.-F. Revol, D. G. Gray, Langmuir 1996, 12, 2076–2082.
- 47C. C. Y. Cheung, M. Giese, J. A. Kelly, W. Y. Hamad, M. J. MacLachlan, ACS Macro Lett. 2013, 2, 1016–1020.
- 48X. M. Dong, D. G. Gray, Langmuir 1997, 13, 2404–2409.
- 49S. Beck, J. Bouchard, G. Chauve, R. Berry, Cellulose 2013, 20, 1401–1411.
- 50J. Pan, W. Hamad, S. K. Straus, Macromolecules 2010, 43, 3851–3858.
- 51T.-D. Nguyen, W. Y. Hamad, M. J. MacLachlan, Chem. Commun. 2013, 49, 11296–11298.
- 52Y. P. Zhang, V. P. Chodavarapu, A. G. Kirk, M. P. Andrews, Sens. Actuators B 2013, 176, 692–697.
- 53
- 53aE. Belamie, P. Davidson, M. M. Giraud-Guille, J. Phys. Chem. B 2004, 108, 14991–15000;
- 53bJ. F. Revol, R. H. Marchessault, Int. J. Biol. Macromol. 1993, 15, 329–335.
- 54
- 54aQ. Liao, Q. Shao, H. Wang, G. Qiu, X. Lu, Carbohydr. Polym. 2012, 87, 2648–2654;
- 54bG. S. Rekhi, S. S. Jambhekar, Drug Dev. Ind. Pharm. 1995, 21, 61–77;
- 54cJ. P. F. Lagerwall, C. Schutz, M. Salajkova, J. Noh, J. H. Park, G. Scalia, L. Bergstrom, NPG Asia Mater. 2014, 6, e 80.
- 55
- 55aL. Yan, Q. Zhu, T. Ikeda, J. Appl. Polym. Sci. 2001, 82, 2770–2774;
- 55bR. S. Werbowyj, D. G. Gray, Macromolecules 1980, 13, 69–73.
- 56F.-X. Xiao, J. Miao, B. Liu, J. Am. Chem. Soc. 2014, 136, 1559–1569.
- 57S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, G. A. Ozin, Nano Lett. 2006, 6, 2456–2461.
- 58H. K. Lee, Y. H. Lee, Q. Zhang, I. Y. Phang, J. M. R. Tan, Y. Cui, X. Y. Ling, ACS Appl. Mater. Interfaces 2013, 5, 11409–11418.
- 59
- 59aK. Ariga, T. Nakanishi, J. P. Hill, Curr. Opin. Colloid Interface Sci. 2007, 12, 106–120;
- 59bK. Sakakibara, J. P. Hill, K. Ariga, Small 2011, 7, 1288–1308.
- 60M. Roman, D. G. Gray, Langmuir 2005, 21, 5555–5561.
- 61D. A. J. Rouquerol, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, Pure Appl. Chem. 1994, 66, 1739–1758.
- 62 S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publisher, Dordrecht, 2004.
10.1007/978-1-4020-2303-3 Google Scholar
- 63T. Ohsuna, Z. Liu, S. Che, O. Terasaki, Small 2005, 1, 233–237.
- 64M. Giese, M. K. Khan, W. Y. Hamad, M. J. MacLachlan, ACS Macro Lett. 2013, 2, 818–821.
- 65J. A. Kelly, A. M. Shukaliak, C. C. Y. Cheung, K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, Angew. Chem. Int. Ed. 2013, 52, 8912–8916; Angew. Chem. 2013, 125, 9080–9084.
- 66K. Ufuk, M. Min, R. Maren, J. Thomas, W. Gerhard, R. E. Alan, Model Cellulosic Surfaces, ACS Symposium Series, Bd. 1019 (Hrsg.: ), American Chemical Society, Washington, DC, 2009, S. 137–155.
- 67C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710–712.
- 68
- 68aF. Schüth, Chem. Mater. 2001, 13, 3184–3195;
- 68bP. V. Braun, P. Osenar, S. I. Stupp, Nature 1996, 380, 325–328;
- 68cG. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, J. H. Wang, Science 1997, 278, 838–840;
- 68dK. A. Asghar, J. M. Elliott, A. M. Squires, J. Mater. Chem. 2012, 22, 13311–13317;
- 68eY. Meng, D. Gu, F. Zhang, Y. Shi, H. Yang, Z. Li, C. Yu, B. Tu, D. Zhao, Angew. Chem. Int. Ed. 2005, 44, 7053–7059; Angew. Chem. 2005, 117, 7215–7221;
- 68fY. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein, D. Zhao, Chem. Mater. 2006, 18, 4447–4464;
- 68gD. Feng, Y. Lv, Z. Wu, Y. Dou, L. Han, Z. Sun, Y. Xia, G. Zheng, D. Zhao, J. Am. Chem. Soc. 2011, 133, 15148–15156.
- 69A. Thomas, M. Antonietti, Adv. Funct. Mater. 2003, 13, 763–766.
- 70W. Wang, R. Liu, W. Liu, J. Tan, W. Liu, H. Kang, Y. Huang, J. Mater. Sci. 2010, 45, 5567–5573.
- 71H. Qi, X. Roy, K. E. Shopsowitz, J. K. H. Hui, M. J. MacLachlan, Angew. Chem. Int. Ed. 2010, 49, 9740–9743; Angew. Chem. 2010, 122, 9934–9937.
- 72T.-D. Nguyen, K. E. Shopsowitz, M. J. MacLachlan, Chem. Eur. J. 2013, 19, 15148–15154.
- 73Y. Shin, G. J. Exarhos, Mater. Lett. 2007, 61, 2594–2597.
- 74J. A. Kelly, M. Yu, W. Y. Hamad, M. J. MacLachlan, Adv. Opt. Mater. 2013, 1, 295–299.
- 75K. E. Shopsowitz, J. A. Kelly, W. Y. Hamad, M. J. MacLachlan, Adv. Funct. Mater. 2014, 24, 327–338.
- 76M. A. Brook, Y. Chen, K. Guo, Z. Zhang, J. D. Brennan, J. Mater. Chem. 2004, 14, 1469–1479.
- 77K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, J. Am. Chem. Soc. 2012, 134, 867–870.
- 78A. S. Terpstra, K. E. Shopsowitz, C. F. Gregory, A. P. Manning, C. A. Michal, W. Y. Hamad, J. Yang, M. J. MacLachlan, Chem. Commun. 2013, 49, 1645–1647.
- 79M. Giese, J. C. De Witt, K. E. Shopsowitz, A. P. Manning, R. Y. Dong, C. A. Michal, W. Y. Hamad, M. J. MacLachlan, ACS Appl. Mater. Interfaces 2013, 5, 6854–6859.
- 80K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, Angew. Chem. Int. Ed. 2011, 50, 10991–10995; Angew. Chem. 2011, 123, 11183–11187.
- 81J. A. Kelly, M. Giese, K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, Acc. Chem. Res. 2014, 47, 1088–1096.
- 82G. Siqueira, J. Bras, A. Dufresne, Polymer 2010, 2, 728–765.
- 83V. Favier, H. Chanzy, J. Y. Cavaille, Macromolecules 1995, 28, 6365–6367.
- 84A. Dufresne, Int. Polym. Process. 2012, 27, 557–564.
- 85
- 85aJ. M. G. Cowie, G. I. Rodden, Polymer 2002, 43, 3415–3419;
- 85bH. Song, Y. Niu, Z. Wang, J. Zhang, Biomacromolecules 2011, 12, 1087–1096.
- 86A. Cosutchi, C. Hulubei, I. Stoica, S. Ioan, J. Polym. Res. 2011, 18, 2389–2402.
- 87S. N. Fernandes, Y. Geng, S. Vignolini, B. J. Glover, A. C. Trindade, J. P. Canejo, P. L. Almeida, P. Brogueira, M. H. Godinho, Macromol. Chem. Phys. 2013, 214, 25–32.
- 88F. RenChun, D. Jun, H. Hui, G. Zhong-Cheng, High Perform. Polym. 2014, 26, 27–33.
- 89M. Tatsumi, Y. Teramoto, Y. Nishio, Biomacromolecules 2012, 13, 1584–1591.
- 90M. Grunert, W. Winter, J. Polym. Environ. 2002, 10, 27–30.
- 91J. Araki, M. Wada, S. Kuga, Langmuir 2001, 17, 21–27.
- 92L. Heux, G. Chauve, C. Bonini, Langmuir 2000, 16, 8210–8212.
- 93
- 93aM. K. Khan, M. Giese, M. Yu, J. A. Kelly, W. Y. Hamad, M. J. MacLachlan, Angew. Chem. Int. Ed. 2013, 52, 8921–8924; Angew. Chem. 2013, 125, 9089–9092;
- 93bM. Giese, L. K. Blusch, M. K. Khan, W. Y. Hamad, M. J. MacLachlan, Angew. Chem. Int. Ed. 2014, 53, 8880–8884; Angew. Chem. 2014, 126, 9026–9030.
- 94K. E. Shopsowitz, A. Stahl, W. Y. Hamad, M. J. MacLachlan, Angew. Chem. Int. Ed. 2012, 51, 6886–6890; Angew. Chem. 2012, 124, 6992–6996.
- 95S. Kinoshita, Structural Colors in the Realm of Nature, World Scientific Publishing Co., Hackensack, 2008.
10.1142/6496 Google Scholar
- 96
- 96aJ. Xu, Z. Guo, J. Colloid Interface Sci. 2013, 406, 1–17;
- 96bK. Yu, T. Fan, S. Lou, D. Zhang, Prog. Mater. Sci. 2013, 58, 825–873.
- 97J. A. Kelly, C. P. K. Manchee, S. Cheng, J. M. Ahn, K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, J. Mater. Chem. C 2014, 2, 5093–5097.
- 98K. Robbie, D. J. Broer, M. J. Brett, Nature 1999, 399, 764–766.
- 99
- 99aR. C. Schroden, M. Al-Daous, C. F. Blanford, A. Stein, Chem. Mater. 2002, 14, 3305–3315;
- 99bG. I. N. Waterhouse, M. R. Waterland, Polyhedron 2007, 26, 356–368;
- 99cC. I. Aguirre, E. Reguera, A. Stein, Adv. Funct. Mater. 2010, 20, 2565–2578;
- 99dS. O. Klimonsky, V. A. Vera, S. S. Alexander, D. T. Yuri, Russ. Chem. Rev. 2011, 80, 1191.
- 100
- 100aH.-S. Kitzerow, A. Lorenz, H. Matthias (Hrsg.: H.-S. Kitzerow, A. Lorenz), Wiley-VCH, Weinheim, 2008;
- 100bH. S. Kitzerow, A. Lorenz, H. Matthias, Phys. Status Solidi A 2007, 204, 3754–3767.
- 101
- 101aJ. Ge, Y. Yin, Angew. Chem. Int. Ed. 2011, 50, 1492–1522; Angew. Chem. 2011, 123, 1530–1561;
- 101bZ. L. Wu, J. P. Gong, NPG Asia Mater 2011, 3, 57–64;
- 101cS. A. Asher, J. Holtz, J. Weissman, G. S. Pan, MRS Bull. 1998, 23, 44–50.
- 102D. J. Broer, C. M. W. Bastiaansen, M. G. Debije, A. P. H. J. Schenning, Angew. Chem. Int. Ed. 2012, 51, 7102–7109; Angew. Chem. 2012, 124, 7210–7218.
- 103M. K. Khan, W. Y. Hamad, M. J. MacLachlan, Adv. Mater. 2014, 26, 2323–2328.
- 104W.-E. Lee, Y.-J. Jin, L.-S. Park, G. Kwak, Adv. Mater. 2012, 24, 5604–5609.
- 105Y. Geng, P. L. Almeida, S. N. Fernandes, C. Cheng, P. Palffy-Muhoray, M. H. Godinho, Sci. Rep. 2013, 3, 1028.
- 106M. R. Islam, X. Li, K. Smyth, M. J. Serpe, Angew. Chem. Int. Ed. 2013, 52, 10330–10333; Angew. Chem. 2013, 125, 10520–10523.
- 107
- 107aR. A. Caruso in Colloid Chemistry I, Topics in Current Chemistry Bd. 226 (Hrsg.: ), Springer, Berlin, 2003, S. 91–118;
- 107bH. Liu, G. Wang, J. Liu, S. Qiao, H. Ahn, J. Mater. Chem. 2011, 21, 3046–3052;
- 107cW.-C. Li, G.-Z. Nong, A.-H. Lu, H.-Q. Hu, J. Porous Mater. 2011, 18, 23–30;
- 107dG. S. Armatas, A. P. Katsoulidis, D. E. Petrakis, P. J. Pomonis, M. G. Kanatzidis, Chem. Mater. 2010, 22, 5739–5746;
- 107eT. Waitz, B. Becker, T. Wagner, T. Sauerwald, C. D. Kohl, M. Tiemann, Sens. Actuators B 2010, 150, 788–793.
- 108
- 108aY. Li, J. Shi, Adv. Mater. 2014, 26, 3176–3205;
- 108bD. Gu, F. Scüth, Chem. Soc. Rev. 2014, 43, 313–344.
- 109
- 109aC. Liang, Z. Li, S. Dai, Angew. Chem. Int. Ed. 2008, 47, 3696–3717; Angew. Chem. 2008, 120, 3754–3776;
- 109bW. Yue, X. Xu, J. T. S. Irvine, P. S. Attidekou, C. Liu, H. He, D. Zhao, W. Zhou, Chem. Mater. 2009, 21, 2540–2546.
- 110
- 110aJ. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. B. Kim, Chem. Commun. 1999, 2177–2178;
- 110bR. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999, 103, 7743–7746;
- 110cM. Tiemann, Chem. Mater. 2008, 20, 961–971;
- 110dA. H. Lu, F. Schüth, Adv. Mater. 2006, 18, 1793–1805.
- 111
- 111aP. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845–854;
- 111bY. S. Hu, P. Adelhelm, B. M. Smarsly, S. Hore, M. Antonietti, J. Maier, Adv. Funct. Mater. 2007, 17, 1873–1878;
- 111cS. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001, 412, 169–172;
- 111dL. Liao, M. Zheng, Z. Zhang, B. Yan, X. Chang, G. Ji, Z. Shen, T. Wu, J. Cao, J. Zhang, H. Gong, J. Cao, T. Yu, Carbon 2009, 47, 1841–1845.
- 112
- 112aA. B. Fuertes, F. Pico, J. M. Rojo, J. Power Sources 2004, 133, 329–336;
- 112bA. B. Fuertes, G. Lota, T. A. Centeno, E. Frackowiak, Electrochim. Acta 2005, 50, 2799–2805.
- 113A. Ivanova, D. Fattakhova-Rohlfing, B. E. Kayaalp, J. Rathouský, T. Bein, J. Am. Chem. Soc. 2014, 136, 5930–5937.
- 114G. Chu, J. Feng, Y. Wang, X. Zhang, Y. Xu, H. Zhang, Dalton Trans. 2014, 43, 15321–15327.
- 115I. S. Nikolaev, P. Lodahl, W. L. Vos, J. Phys. Chem. C 2008, 112, 7250–7254.
- 116
- 116aH. Qi, K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, J. Am. Chem. Soc. 2011, 133, 3728–3731;
- 116bJ. A. Kelly, K. E. Shopsowitz, J. M. Ahn, W. Y. Hamad, M. J. MacLachlan, Langmuir 2012, 28, 17256–17262.
- 117M.-C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293–346.
- 118
- 118aC. Noguez, I. L. Garzon, Chem. Soc. Rev. 2009, 38, 757–771;
- 118bC. Gautier, T. Bürgi, ChemPhysChem 2009, 10, 483–492;
- 118cV. Kitaev, J. Mater. Chem. 2008, 18, 4745–4749.
- 119
- 119aK. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Chem. Rev. 2012, 112, 2739–2779;
- 119bZ. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, J. Am. Chem. Soc. 2012, 134, 3322–3325.
- 120A. P. Alivisatos, Science 1996, 271, 933–937.
- 121
- 121aK. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, Y. Arakawa, Nat. Photonics 2008, 2, 688–692;
- 121bA. C. Arsenault, T. J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, G. A. Ozin, Nat. Mater. 2006, 5, 179–184;
- 121cO. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, Science 1999, 284, 1819–1821;
- 121dS. Ogawa, M. Imada, S. Yoshimoto, M. Okano, S. Noda, Science 2004, 305, 227–229.
- 122T.-D. Nguyen, W. Y. Hamad, M. J. MacLachlan, Adv. Funct. Mater. 2014, 24, 777–783.
- 123
- 123aP. P. Jha, P. Guyot-Sionnest, ACS Nano 2009, 3, 1011–1015;
- 123bS. S. L. Sobhana, M. V. Devi, T. P. Sastry, A. Mandal, J. Nanopart. Res. 2011, 13, 1747–1757.
- 124
- 124aE. R. Goldman, I. L. Medintz, J. L. Whitley, A. Hayhurst, A. R. Clapp, H. T. Uyeda, J. R. Deschamps, M. E. Lassman, H. Mattoussi, J. Am. Chem. Soc. 2005, 127, 6744–6751;
- 124bJ.-S. Yang, T. M. Swager, J. Am. Chem. Soc. 1998, 120, 5321–5322;
- 124cR. Tu, B. Liu, Z. Wang, D. Gao, F. Wang, Q. Fang, Z. Zhang, Anal. Chem. 2008, 80, 3458–3465;
- 124dK. Zhang, H. Zhou, Q. Mei, S. Wang, G. Guan, R. Liu, J. Zhang, Z. Zhang, J. Am. Chem. Soc. 2011, 133, 8424–8427;
- 124eY. Ma, H. Li, S. Peng, L. Wang, Anal. Chem. 2012, 84, 8415–8421.
- 125
- 125aA. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, V. Bulovic, Nature 2005, 434, 876–879;
- 125bY. Xia, L. Song, C. Zhu, Anal. Chem. 2011, 83, 1401–1407;
- 125cR. Freeman, T. Finder, L. Bahshi, R. Gill, I. Willner, Adv. Mater. 2012, 24, 6416–6421;
- 125dW. Wei, X. Huang, K. Chen, Y. Tao, X. Tang, RSC Adv. 2012, 2, 3765–3771;
- 125eT. Pazhanivel, D. Nataraj, V. P. Devarajan, V. Mageshwari, K. Senthil, D. Soundararajan, Anal. Methods 2013, 5, 910–916;
- 125fS. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, S. K. Ghosh, Angew. Chem. Int. Ed. 2013, 52, 2881–2885; Angew. Chem. 2013, 125, 2953–2957.
- 126S. H. M. Mehr, M. Giese, H. Qi, K. E. Shopsowitz, W. Y. Hamad, M. J. MacLachlan, Langmuir 2013, 29, 12579–12584.
- 127
- 127aP. K. H. Ho, D. S. Thomas, R. H. Friend, N. Tessler, Science 1999, 285, 233–236;
- 127bG. Yu, A. J. Heeger, Synth. Met. 1997, 85, 1183–1186;
- 127cA. Teichler, R. Eckardt, C. Friebe, J. Perelaer, U. S. Schubert, Thin Solid Films 2011, 519, 3695–3702;
- 127dA. J. Heeger, Angew. Chem. Int. Ed. 2001, 40, 2591–2611;
10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2660–2682.
- 128
- 128aD. P. Puzzo, F. Scotognella, M. Zavelani-Rossi, M. Sebastian, A. J. Lough, I. Manners, G. Lanzani, R. Tubino, G. A. Ozin, Nano Lett. 2009, 9, 4273–4278;
- 128bA. Furmanchuk, J. Leszczynski, S. Tretiak, S. V. Kilina, J. Phys. Chem. C 2012, 116, 6831–6840.
- 129L. Feng, H. Li, Y. Qu, C. Lu, Chem. Commun. 2012, 48, 4633–4635.
- 130
- 130aR. C. Smith, W. M. Fischer, D. L. Gin, J. Am. Chem. Soc. 1997, 119, 4092–4093;
- 130bH. Skaff, K. Sill, T. Emrick, J. Am. Chem. Soc. 2004, 126, 11322–11325;
- 130cM. Kyotani, S. Matsushita, M. Goh, T. Nagai, Y. Matsui, K. Akagi, Nanoscale 2010, 2, 509–514.
- 131S. Matsushita, K. Akagi, Isr. J. Chem. 2011, 51, 1075–1095.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.