Acidity and Hydrogen Exchange Dynamics of Iron(II)-Bound Nitroxyl in Aqueous Solution†
Dr. Yin Gao
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
Search for more papers by this authorAbouzar Toubaei
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
Search for more papers by this authorDr. Xianqi Kong
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
Search for more papers by this authorCorresponding Author
Prof. Dr. Gang Wu
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)Search for more papers by this authorDr. Yin Gao
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
Search for more papers by this authorAbouzar Toubaei
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
Search for more papers by this authorDr. Xianqi Kong
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
Search for more papers by this authorCorresponding Author
Prof. Dr. Gang Wu
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)Search for more papers by this authorThis work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.
Abstract
Nitroxyl-iron(II) (HNO-FeII) complexes are often unstable in aqueous solution, thus making them very difficult to study. Consequently, many fundamental chemical properties of FeII-bound HNO have remained unknown. Using a comprehensive multinuclear (1H, 15N, 17O) NMR approach, the acidity of the FeII-bound HNO in [Fe(CN)5(HNO)]3− was investigated and its pKa value was determined to be greater than 11. Additionally, HNO undergoes rapid hydrogen exchange with water in aqueous solution and this exchange process is catalyzed by both acid and base. The hydrogen exchange dynamics for the FeII-bound HNO have been characterized and the obtained benchmark values, when combined with the literature data on proteins, reveal that the rate of hydrogen exchange for the FeII-bound HNO in the interior of globin proteins is reduced by a factor of 106.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201407018_sm_miscellaneous_information.pdf3.3 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. S. Stamler, D. J. Singel, J. Loscalzo, Science 1992, 258, 1898–1902.
- 2M. N. Hughes, Biochim. Biophys. Acta Bioenerg. 1999, 1411, 263–272.
- 3S. B. King, H. T. Nagasawa, Methods Enzymol. 1998, 301, 211–221.
- 4K. M. Miranda, Coord. Chem. Rev. 2005, 249, 433–455.
- 5P. J. Farmer, F. Sulc, J. Inorg. Biochem. 2005, 99, 166–184.
- 6J. M. Fukuto, A. S. Dutton, K. N. Houk, ChemBioChem 2005, 6, 612–619.
- 7N. Paolocci, M. I. Jackson, B. E. Lopez, K. Miranda, C. G. Tocchetti, D. A. Wink, A. J. Hobbs, J. M. Fukuto, Pharmacol. Ther. 2007, 113, 442–458.
- 8F. Doctorovich, D. Bikiel, J. Pellegrino, S. A. Suárez, A. Larsen, M. A. Martí, Coord. Chem. Rev. 2011, 255, 2764–2784.
- 9J. A. Reisz, E. Bechtold, S. B. King, Dalton Trans. 2010, 39, 5203–5212.
- 10T. C. Berto, A. L. Speelman, S. Zheng, N. Lehnert, Coord. Chem. Rev. 2013, 257, 244–259.
- 11M. R. Filipovic, M. Eberhardt, V. Prokopovic, A. Mijuskovic, Z. Orescanin-Dusic, P. Reeh, I. Ivanovic-Burmazovic, J. Med. Chem. 2013, 56, 1499–1508.
- 12A. L. Speelman, N. Lehnert, Acc. Chem. Res. 2014, 47, 1106–1116.
- 13
- 13aM. Bayachou, R. Lin, W. Choi, P. J. Farmer, J. Am. Chem. Soc. 1998, 120, 9888–9893;
- 13bR. Lin, P. J. Farmer, J. Am. Chem. Soc. 2000, 122, 2393–2394;
- 13cF. Sulc, C. E. Immoos, D. Pervitsky, P. J. Farmer, J. Am. Chem. Soc. 2004, 126, 1096–1101;
- 13dC. E. Immoos, F. Sulc, P. J. Farmer, K. Czarnecki, D. F. Bocian, A. Levina, J. B. Aitken, R. S. Armstrong, P. A. Lay, J. Am. Chem. Soc. 2005, 127, 814–815;
- 13eM. R. Kumar, D. Pervitsky, L. Chan, T. Poulos, S. Kundu, M. S. Hargrove, E. J. Rivera, A. Diaz, J. L. Colon, P. J. Farmer, Biochemistry 2009, 48, 5018–5025;
- 13fM. R. Kumar, J. M. Fukuto, K. M. P. J. Farmer, Inorg. Chem. 2010, 49, 6283–6292.
- 14A. C. Montenegro, S. E. Bari, J. A. Olabe, J. Inorg. Biochem. 2013, 118, 108–114.
- 15A. C. Montenegro, V. T. Amorebieta, L. D. Slep, D. F. Martín, F. Roncaroli, D. H. Murgida, S. E. Bari, J. A. Olabe, Angew. Chem. Int. Ed. 2009, 48, 4213–4216; Angew. Chem. 2009, 121, 4277–4280.
- 16V. Shafirovich, S. V. Lymar, Proc. Natl. Acad. Sci. USA 2002, 99, 7340–7345.
- 17
- 17aI.-K. Choi, Y. Liu, D. Feng, K.-J. Paeng, M. D. Ryan, Inorg. Chem. 1991, 30, 1832–1839;
- 17bD. Sellmann, T. Gottschalk-Gaudig, D. Häußinger, F. W. Heinemann, B. A. Hess, Chem. Eur. J. 2001, 7, 2099–2103;
10.1002/1521-3765(20010518)7:10<2099::AID-CHEM2099>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 17cL. E. Goodrich, S. Roy, E. E. Alp, J. Zhao, M. Y. Hu, N. Lehnert, Inorg. Chem. 2013, 52, 7766–7780.
- 18H. Dahn, P. Pechy, R. Flogel, Helv. Chim. Acta 1994, 77, 306–316.
- 19G. Wu, J. Zhu, X. Mo, R. Wang, V. Terskikh, J. Am. Chem. Soc. 2010, 132, 5143–5155.
- 20G. Wu, P. Mason, X. Mo, V. Terskikh, J. Phys. Chem. A 2008, 112, 1024–1032.
- 21G. Wu, Prog. Nucl. Magn. Reson. Spectrosc. 2008, 52, 118–169.
- 22
- 22aS. O. Nielsen, Biochim. Biophys. Acta 1960, 37, 146–147;
- 22bI. M. Klotz, B. H. Frank, J. Am. Chem. Soc. 1965, 87, 2721–2728;
- 22cI. M. Klotz, B. H. Frank, J. Am. Chem. Soc. 1964, 86, 3889;
- 22dC. E. Dempsey, Prog. Nucl. Magn. Reson. Spectrosc. 2001, 39, 135–170.
- 23E. Liepinsh, G. Otting, K. Wüthrich, J. Biomol. NMR 1992, 2, 447–465.
- 24L. Yang, Y. Ling, Y. Zhang, J. Am. Chem. Soc. 2011, 133, 13814–13817.
- 25
- 25aM. C. González Lebrero, D. A. Scherlis, G. L. Estiú, J. A. Olabe, D. A. Estrin, Inorg. Chem. 2001, 40, 4127–4133;
- 25bR. G. Serres, C. A. Grapperhaus, E. Bothe, E. Bill, T. Weyhermüller, F. Neese, K. Wieghardt, J. Am. Chem. Soc. 2004, 126, 5138–5153;
- 25cN. Lehnert, V. K. K. Praneeth, F. Paulat, J. Comput. Chem. 2006, 27, 1338–1351;
- 25dJ. Pellegrino, S. E. Bari, D. E. Bikiel, F. Doctorovich, J. Am. Chem. Soc. 2010, 132, 989–995;
- 25eA. K. Patra, K. S. Dube, B. C. Sanders, G. C. Papaefthymiou, J. Conradie, A. Ghosh, T. C. Harrop, Chem. Sci. 2012, 3, 364–369.
- 26
- 26aY. Ling, C. Mills, R. Weber, L. Yang, Y. Zhang, J. Am. Chem. Soc. 2010, 132, 1583–1591;
- 26bY. Zhang, J. Inorg. Biochem. 2013, 118, 191–200.
- 27
- 27aM. D. Lumsden, G. Wu, R. E. Wasylishen, R. D. Curtis, J. Am. Chem. Soc. 1993, 115, 2825–2832;
- 27bR. Salzmann, M. Wojdelski, M. McMahon, R. H. Havlin, E. Oldfield, J. Am. Chem. Soc. 1998, 120, 1349–1356.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.