Spielt die Zeolithkatalyse in Bioraffinerien der Zukunft eine ähnlich große Rolle wie in der Erdölraffination?
Prof. Pierre A. Jacobs
Center for Surface Chemistry and Catalysis (COK), KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgien)
Search for more papers by this authorDr. Michiel Dusselier
Center for Surface Chemistry and Catalysis (COK), KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgien)
Search for more papers by this authorCorresponding Author
Prof. Bert F. Sels
Center for Surface Chemistry and Catalysis (COK), KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgien)
Center for Surface Chemistry and Catalysis (COK), KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgien)Search for more papers by this authorProf. Pierre A. Jacobs
Center for Surface Chemistry and Catalysis (COK), KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgien)
Search for more papers by this authorDr. Michiel Dusselier
Center for Surface Chemistry and Catalysis (COK), KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgien)
Search for more papers by this authorCorresponding Author
Prof. Bert F. Sels
Center for Surface Chemistry and Catalysis (COK), KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgien)
Center for Surface Chemistry and Catalysis (COK), KU Leuven, Kasteelpark Arenberg 23, 3001 Heverlee (Belgien)Search for more papers by this authorAbstract
Der Übergang von der Erdöl- zu einer Biomasse-basierten Kraftstoffökonomie wird neue Strategien zur Umwandlung von Rohstoffen erfordern. Bei einem petrochemischen Raffinationsverfahren werden die Kohlenwasserstoffe der Rohölfraktionen katalytisch zu hochwertigen Kraftstoffen umgesetzt. Besonders gut eignen sich dafür bestimmte Zeolithkatalysatoren. Im Unterschied zum Erdöl weist Biomasse einen hohen Sauerstoffgehalt auf, was Prozesse bei niedrigeren Temperaturen und im wässrigen Medium erfordert. Zeolithkatalysatoren müssen daher in flüssigem heißem Wasser stabil sein. Wie wir in diesem Essay zeigen, ist es mittlerweile möglich, Zeolithe gezielt für die selektive Umwandlung von Biomassefraktionen anzupassen.
References
- 1
- 1aW. Vermeiren, J. P. Gilson, Top. Catal. 2009, 52, 1131–1161;
- 1bR. A. Meyers, Handbook of Petroleum Refining Processes, 3rd ed., McGraw Hill, New York, 2004.
- 2IZA-Structure-Commission, Database of Zeolite Structures, http://izasc.biw.kuleuven.be/fmi/xsl/IZA-SC/ft.xsl; 23. Januar 2014.
- 3K. Tanabe, W. F. Hölderich, Appl. Catal. A 1999, 181, 399–434.
- 4C. Marcilly, J. Catal. 2003, 216, 47–62.
- 5C. V. McDaniel, P. K. Maher, Molecular Sieves, Soc. Chem. Ind., London, 1968, S. 168.
- 6
- 6aR. von Ballmoos, D. H. Harris, J. S. Magee, Handbook of Heterogeneous Catalysis (Hrsg.: ), Wiley-VCV, Weinheim, 1997, S. 1955;
- 6bP. B. Venuto, E. T. Habib, Jr., Fluid Catalytic Cracking with Zeolite Catalysts, Marcel Dekker, New York, 1979.
- 7M. A. den Hollander, M. Wissink, M. Makkee, J. A. Moulijn, Appl. Catal. A 2002, 223, 85–102.
- 8R. Gounder, E. Iglesia, Chem. Commun. 2013, 49, 3491–3509.
- 9J. Weitkamp, ChemCatChem 2012, 4, 292–306.
- 10M. Guisnet, Catal. Today 2013, 218–219, 123–134.
- 11
- 11aG. W. Huber, A. Corma, Angew. Chem. 2007, 119, 7320–7338; Angew. Chem. Int. Ed. 2007, 46, 7184–7201;
- 11bM. He, Y. Sun, B. Han, Angew. Chem. 2013, 125, 9798–9812; Angew. Chem. Int. Ed. 2013, 52, 9620–9633.
- 12C. Zhao, T. Bruck, J. A. Lercher, Green Chem. 2013, 15, 1720–1739.
- 13S. N. Naik, V. V. Goud, P. K. Rout, A. K. Dalai, Renewable Sustainable Energy Rev. 2010, 14, 578–597.
- 14E. Taarning, C. M. Osmundsen, X. Yang, B. Voss, S. I. Andersen, C. H. Christensen, Energy Environ. Sci. 2011, 4, 793–804.
- 15TransportPolicy.net, http://transportpolicy.net; 23. Januar 2014.
- 16S. J. Bennett, P. J. G. Pearson, Chem. Eng. Res. Des. 2009, 87, 1120–1139.
- 17S. Tan, Z. Zhang, J. Sun, Q. Wang, Chin. J. Catal. 2013, 34, 641–650.
- 18Y.-T. Cheng, J. Jae, J. Shi, W. Fan, G. W. Huber, Angew. Chem. 2012, 124, 1416–1419; Angew. Chem. Int. Ed. 2012, 51, 1387–1390.
- 19P. N. R. Vennestrøm, C. M. Osmundsen, C. H. Christensen, E. Taarning, Angew. Chem. 2011, 123, 10686–10694;
10.1002/ange.201102117 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 10502–10509.
- 20R. Rinaldi, F. Schüth, ChemSusChem 2009, 2, 1096–1107.
- 21P. Gallezot, Chem. Soc. Rev. 2012, 41, 1538–1558.
- 22
- 22aJ. J. Bozell, G. R. Petersen, Green Chem. 2010, 12, 539–554;
- 22bM. Dusselier, M. Mascal, B. F. Sels, Top. Curr. Chem. 2014, 353, DOI: .
- 23
- 23aY. Román-Leshkov, M. E. Davis, ACS Catal. 2011, 1, 1566–1580;
- 23bL. Bui, H. Luo, W. R. Gunther, Y. Román-Leshkov, Angew. Chem. 2013, 125, 8180–8183;
10.1002/ange.201302575 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 8022–8025.
- 24E. D′Hondt, S. Van de Vyver, B. F. Sels, P. A. Jacobs, Chem. Commun. 2008, 6011–6012.
- 25D. Kubička, I. Kubičková, J. Čejka, Catal. Rev. 2013, 55, 1–78.
- 26M. F. Demirbas, Appl. Energy 2009, 86, S 151–S161.
- 27M. L. Granados, P. J. M. Torres, Catal. Today 2012, 195.
- 28J.-M. Park, A. Kondo, J.-S. Chang, C. Perry Chou, P. Monsan, Bioresour. Technol. 2013, 135, 1.
- 29C.-H. Zhou, X. Xia, C.-X. Lin, D.-S. Tong, J. Beltramini, Chem. Soc. Rev. 2011, 40, 5588–5617.
- 30P. C. A. Bruijnincx, B. M. Weckhuysen, Angew. Chem. 2013, 125, 12198–12206;
10.1002/ange.201305058 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 11980–11987.
- 31C. Sandu, B. Wright, online unter http://www.hydrocarbonprocessing.com; 1. Juli 2013.
- 32C. Bouchy, G. Hastoy, E. Gillion, J. A. Martens, Oil Gas Sci. Technol. 2009, 64, 91.
- 33
- 33aR. Schlögl in Chemical Energy Storage (Hrsg.: ), De Gruyter, 2013, S. 233–255;
- 33bR. Schlögl, Angew. Chem. 2011, 123, 6550–6553;
10.1002/ange.201103415 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 6424–6426.
- 34A. Chica, ISRN Chem. Eng. 2013, Article ID907425.
- 35
- 35aR. D. Cortright, R. R. Davda, J. A. Dumesic, Nature 2002, 418, 964–967;
- 35bR. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright, J. A. Dumesic, Appl. Catal. B 2005, 56, 171–186.
- 36P. A. Jacobs, H. Hinnekens, EPA 0329923, 1989.
- 37J. Geboers, S. Van de Vyver, K. Carpentier, P. Jacobs, B. Sels, Chem. Commun. 2011, 47, 5590–5592.
- 38P. Lanzafame, D. M. Temi, S. Perathoner, A. N. Spadaro, G. Centi, Catal. Today 2012, 179, 178–184.
- 39J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 2010, 110, 3552–3599.
- 40J. C. Hicks, J. Phys. Chem. Lett. 2011, 2, 2280–2287.
- 41C. Zhao, D. M. Camaioni, J. A. Lercher, J. Catal. 2012, 288, 92–103.
- 42B. Peng, Y. Yao, C. Zhao, J. A. Lercher, Angew. Chem. 2012, 124, 2114–2117; Angew. Chem. Int. Ed. 2012, 51, 2072–2075.
- 43T. N. Pham, T. Sooknoi, S. P. Crossley, D. E. Resasco, ACS Catal. 2013, 3, 2456–2473.
- 44M. Hunger in Zeolites and Catalysis, Reactions and Applications, Vol. 2 (Hrsg.: ), Wiley-VCH, Weinheim, 2010, S. 493.
10.1002/9783527630295.ch17 Google Scholar
- 45J. Zečević, C. J. Gommes, H. Friedrich, P. E. de Jongh, K. P. de Jong, Angew. Chem. 2012, 124, 4289–4293;
10.1002/ange.201200317 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 4213–4217.
- 46L. H. Ong, M. Dömök, R. Olindo, A. C. van Veen, J. A. Lercher, Microporous Mesoporous Mater. 2012, 164, 9–20.
- 47J. Garcés, M. Olken, G. John Lee, G. Meima, P. Jacobs, J. Martens, Top. Catal. 2009, 52, 1175–1181.
- 48J. C. Groen, W. Zhu, S. Brouwer, S. J. Huynink, F. Kapteijn, J. A. Moulijn, J. Pérez-Ramírez, J. Am. Chem. Soc. 2006, 128, 355–360.
- 49K. P. de Jong, J. Zečević, H. Friedrich, P. E. de Jongh, M. Bulut, S. van Donk, R. Kenmogne, A. Finiels, V. Hulea, F. Fajula, Angew. Chem. 2010, 122, 10272–10276; Angew. Chem. Int. Ed. 2010, 49, 10074–10078.
- 50
- 50aD. Verboekend, J. Perez-Ramirez, Catal. Sci. Technol. 2011, 1, 879–890;
- 50bK. Li, J. Valla, J. Garcia-Martinez, ChemCatChem 2014, 6, 46–66.
- 51J. Pérez-Ramírez, D. Verboekend, A. Bonilla, S. Abelló, Adv. Funct. Mater. 2009, 19, 3972–3979.
- 52C. Martínez, E. Doskocil, A. Corma, Top. Catal. 2013, 1–15.
- 53A. Inayat, I. Knoke, E. Spiecker, W. Schwieger, Angew. Chem. 2012, 124, 1998–2002;
10.1002/ange.201105738 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 1962–1965.
- 54C. Zhao, W. Song, J. A. Lercher, ACS Catal. 2012, 2, 2714–2723.
- 55D. H. Park, S. S. Kim, H. Wang, T. J. Pinnavaia, M. C. Papapetrou, A. A. Lappas, K. S. Triantafyllidis, Angew. Chem. 2009, 121, 7781–7784; Angew. Chem. Int. Ed. 2009, 48, 7645–7648.
- 56M. Rigutto in Zeolites and Catalysis, Reactions and Applications, Vol. 2 (Hrsg.: ), Wiley-VCH, Weinheim, 2010, S. 301.
- 57E. Verheyen, C. Jo, M. Kurttepeli, G. Vanbutsele, E. Gobechiya, T. I. Korányi, S. Bals, G. Van Tendeloo, R. Ryoo, C. E. A. Kirschhock, J. A. Martens, J. Catal. 2013, 300, 70–80.
- 58
- 58aM. Hartmann, Angew. Chem. 2004, 116, 6004–6006; Angew. Chem. Int. Ed. 2004, 43, 5880–5882;
- 58bS. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam, W. Schwieger, Adv. Mater. 2011, 23, 2602–2615.
- 59X. Mu, D. Wang, Y. Wang, M. Lin, S. Cheng, X. Shu, Chin. J. Catal. 2013, 34, 69–79.
- 60M. Hartmann, X. Kostrov, Chem. Soc. Rev. 2013, 42, 6277–6289.
- 61R. M. Ravenelle, F. Schüßler, A. D′Amico, N. Danilina, J. A. van Bokhoven, J. A. Lercher, C. W. Jones, C. Sievers, J. Phys. Chem. C 2010, 114, 19582–19595.
- 62R. Gounder, M. E. Davis, AIChE J. 2013, 59, 3349–3358.
- 63P. A. Zapata, J. Faria, M. P. Ruiz, R. E. Jentoft, D. E. Resasco, J. Am. Chem. Soc. 2012, 134, 8570–8578.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.