Macroscopic Free-Standing Hierarchical 3D Architectures Assembled from Silver Nanowires by Ice Templating†
Dr. Huai-Ling Gao
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
These authors contributed equally to this work.
Search for more papers by this authorDr. Liang Xu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
These authors contributed equally to this work.
Search for more papers by this authorFei Long
Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027 (P. R. China)
Search for more papers by this authorZhao Pan
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
Search for more papers by this authorYu-Xiang Du
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
Search for more papers by this authorDr. Yang Lu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
Search for more papers by this authorDr. Jin Ge
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
Search for more papers by this authorCorresponding Author
Prof. Dr. Shu-Hong Yu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/===Search for more papers by this authorDr. Huai-Ling Gao
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
These authors contributed equally to this work.
Search for more papers by this authorDr. Liang Xu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
These authors contributed equally to this work.
Search for more papers by this authorFei Long
Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027 (P. R. China)
Search for more papers by this authorZhao Pan
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
Search for more papers by this authorYu-Xiang Du
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
Search for more papers by this authorDr. Yang Lu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
Search for more papers by this authorDr. Jin Ge
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
Search for more papers by this authorCorresponding Author
Prof. Dr. Shu-Hong Yu
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026 (P. R. China) http://staff.ustc.edu.cn/∼yulab/===Search for more papers by this authorThis work is supported by the Ministry of Science and Technology of China, the National Basic Research Program of China (Grants 2012BAD32B05-4, 2010CB934700, 2013CB933900, 2014CB931800), the National Natural Science Foundation of China (Grants 91022032, 91227103, 21061160492, J1030412), and the Chinese Academy of Sciences (Grant KJZD-EW-M01-1).
Abstract
As macroscopic three dimensional (3D) architectures show increasing significance, much effort has been devoted to the hierarchical organization of 1D nanomaterials into serviceable macroscopic 3D assemblies. How to assemble 1D nanoscale building blocks into 3D hierarchical architectures is still a challenge. Herein we report a general strategy based on the use of ice as a template for assembling 1D nanostructures with high efficiency and good controllability. Free-standing macroscopic 3D Ag nanowire (AgNW) assemblies with hierarchical binary-network architectures are then fabricated from a 1D AgNW suspension for the first time. The microstructure of this 3D AgNW network endows it with electrical conductivity and allows it to be made into stretchable and foldable conductors with high electromechanical stability. These properties should make this kind of macroscopic 3D AgNW architecture and it composites suitable for electronic applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201400457_sm_miscellaneous_information.pdf3.5 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. G. Sun, Nanoscale 2010, 2, 1626;
- 1bC. Yang, H. W. Gu, W. Lin, M. M. Yuen, C. P. Wong, M. Y. Xiong, B. Gao, Adv. Mater. 2011, 23, 3052;
- 1cY. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan, Adv. Mater. 2003, 15, 353;
- 1dR. S. Devan, R. A. Patil, J. H. Lin, Y. R. Ma, Adv. Funct. Mater. 2012, 22, 3326;
- 1eY. Z. Long, M. Yu, B. Sun, C. Z. Gu, Z. Y. Fan, Chem. Soc. Rev. 2012, 41, 4560;
- 1fM. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Science 2001, 292, 1897;
- 1gC. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31;
- 1hB. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G. H. Yu, J. L. Huang, C. M. Lieber, Nature 2007, 449, 885;
- 1iW. Lu, C. M. Lieber, Nat. Mater. 2007, 6, 841;
- 1jJ. F. Wang, M. S. Gudiksen, X. F. Duan, Y. Cui, C. M. Lieber, Science 2001, 293, 1455.
- 2
- 2aJ. W. Liu, H. W. Liang, S. H. Yu, Chem. Rev. 2012, 112, 4770;
- 2bH. W. Liang, J. W. Liu, H. S. Qian, S. H. Yu, Acc. Chem. Res. 2013, 46, 1450;
- 2cJ. W. Liu, J. H. Zhu, C. L. Zhang, H. W. Liang, S. H. Yu, J. Am. Chem. Soc. 2010, 132, 8945;
- 2dJ. W. Liu, W. R. Huang, M. Gong, M. Zhang, J. L. Wang, J. Zheng, S. H. Yu, Adv. Mater. 2013, 25, 5910;
- 2eJ. W. Liu, J. Xu, H. W. Liang, K. Wang, S. H. Yu, Angew. Chem. 2012, 124, 7538; Angew. Chem. Int. Ed. 2012, 51, 7420;
- 2fJ. W. Liu, J. L. Wang, W. R. Huang, L. Yu, X. F. Ren, W. C. Wen, S. H. Yu, Sci. Rep. 2012, 2, 987;
- 2gH. L. Gao, Y. Lu, L. B. Mao, D. An, L. Xu, J. T. Gu, F. Long, S. H. Yu, Mater. Horiz. 2014, 1, 69;
- 2hR. K. Joshi, J. J. Schneider, Chem. Soc. Rev. 2012, 41, 5285;
- 2iZ. L. Wang, J. H. Song, Science 2006, 312, 242.
- 3
- 3aB. Z. Tian, J. Liu, T. Dvir, L. H. Jin, J. H. Tsui, Q. Qing, Z. G. Suo, R. Langer, D. S. Kohane, C. M. Lieber, Nat. Mater. 2012, 11, 986;
- 3bC. Pang, G. Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S. H. Ahn, K. Y. Suh, Nat. Mater. 2012, 11, 795;
- 3cK. H. Kim, Y. Oh, M. F. Islam, Nat. Nanotechnol. 2012, 7, 562;
- 3dR. T. Olsson, M. A. S. A. Samir, G. Salazar-Alvarez, L. Belova, V. Strom, L. A. Berglund, O. Ikkala, J. Nogues, U. W. Gedde, Nat. Nanotechnol. 2010, 5, 584;
- 3eH. W. Liang, Q. F. Guan, L. F. Chen, Z. Zhu, W. J. Zhang, S. H. Yu, Angew. Chem. 2012, 124, 5191; Angew. Chem. Int. Ed. 2012, 51, 5101;
- 3fS. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutierrez, F. del Monte, Chem. Soc. Rev. 2013, 42, 794;
- 3gM. Rauber, I. Alber, S. Muller, R. Neumann, O. Picht, C. Roth, A. Schokel, M. E. Toimil-Molares, W. Ensinger, Nano Lett. 2011, 11, 2304;
- 3hJ. M. Lee, J. W. Choung, J. Yi, D. H. Lee, M. Samal, D. K. Yi, C. H. Lee, G. C. Yi, U. Paik, J. A. Rogers, W. I. Park, Nano Lett. 2010, 10, 2783;
- 3iS. Xu, Y. Qin, C. Xu, Y. G. Wei, R. S. Yang, Z. L. Wang, Nat. Nanotechnol. 2010, 5, 366;
- 3jA. I. Hochbaum, P. D. Yang, Chem. Rev. 2010, 110, 527;
- 3kB. Weintraub, Y. G. Wei, Z. L. Wang, Angew. Chem. 2009, 121, 9143;
10.1002/ange.200904492 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 8981.
- 4
- 4aG. H. Yu, A. Y. Cao, C. M. Lieber, Nat. Nanotechnol. 2007, 2, 372;
- 4bJ. K. Yuan, X. G. Liu, O. Akbulut, J. Q. Hu, S. L. Suib, J. Kong, F. Stellacci, Nat. Nanotechnol. 2008, 3, 332.
- 5
- 5aJ. Zhu, H. L. Peng, C. K. Chan, K. Jarausch, X. F. Zhang, Y. Cui, Nano Lett. 2007, 7, 1095;
- 5bJ. Shi, Y. Hara, C. L. Sun, M. A. Anderson, X. D. Wang, Nano Lett. 2011, 11, 3413.
- 6J. Ge, H. B. Yao, X. Wang, Y. D. Ye, J. L. Wang, Z. Y. Wu, J. W. Liu, F. J. Fan, H. L. Gao, C. L. Zhang, S. H. Yu, Angew. Chem. 2013, 125, 1698; Angew. Chem. Int. Ed. 2013, 52, 1654.
- 7
- 7aZ. P. Chen, W. C. Ren, L. B. Gao, B. L. Liu, S. F. Pei, H. M. Cheng, Nat. Mater. 2011, 10, 424;
- 7bJ. A. Rogers, T. Someya, Y. G. Huang, Science 2010, 327, 1603;
- 7cY. G. Sun, W. M. Choi, H. Q. Jiang, Y. G. Y. Huang, J. A. Rogers, Nat. Nanotechnol. 2006, 1, 201.
- 8
- 8aS. Deville, E. Saiz, R. K. Nalla, A. P. Tomsia, Science 2006, 311, 515;
- 8bS. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, Nat. Mater. 2009, 8, 966.
- 9E. Munch, E. Saiz, A. P. Tomsia, S. Deville, J. Am. Ceram. Soc. 2009, 92, 1534.
- 10
- 10aT. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 2008, 321, 1468;
- 10bF. Xu, Y. Zhu, Adv. Mater. 2012, 24, 5117;
- 10cP. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, S. H. Ko, Adv. Mater. 2012, 24, 3326.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.