Competition Between Concerted and Stepwise Dynamics in the Triplet Di-π-Methane Rearrangement†
Dr. Gonzalo Jiménez-Osés
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)
Search for more papers by this authorDr. Peng Liu
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)
Search for more papers by this authorDr. Ricardo A. Matute
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Kendall N. Houk
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)Search for more papers by this authorDr. Gonzalo Jiménez-Osés
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)
Search for more papers by this authorDr. Peng Liu
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)
Search for more papers by this authorDr. Ricardo A. Matute
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Kendall N. Houk
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)
Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569 (USA)Search for more papers by this authorThis research was supported by the National Science Foundation (CHE-1059084). Calculations were performed on the Hoffman2 and Dawson2 GPU clusters at UCLA and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (OCI-1053575).
Abstract
The molecular dynamics of the triplet-state Zimmerman di-π-methane rearrangement of dibenzobarrelene were computed with B3LYP and M06-2X density functionals. All productive quasiclassical trajectories involve sequential formation and cleavage of CC bonds and an intermediate with lifetimes ranging from 13 to 1160 fs. Both dynamically concerted and stepwise trajectories are found. The average lifetime of this intermediate is significantly shorter than predicted by either transition-state theory or the Rice–Ramsperger–Kassel–Marcus model, thus indicating the non-statistical nature of the reaction mechanism.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201310237_sm_miscellaneous_information.pdf2.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. G. Levine, T. J. Martínez, Annu. Rev. Phys. Chem. 2007, 58, 613–634.
- 2
- 2aJ. D. Gezelter, W. H. Miller, J. Chem. Phys. 1996, 104, 3546–3554;
- 2bH. Tachikawa, J. Organomet. Chem. 1998, 555, 161–166;
- 2cS. Mai, P. Marquetand, L. Gonzalez, arXiv:1302.1438 [physics.chem-ph] 2013.
- 3R. A. Matute, K. N. Houk, Angew. Chem. 2012, 124, 13274–13277;
10.1002/ange.201208002 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 13097–13100.
- 4D. G. Truhlar, B. C. Garrett, S. J. Klippenstein, J. Phys. Chem. 1996, 100, 12771–12800.
- 5
- 5aL. S. Kassel, Chem. Rev. 1932, 10, 11–25;
- 5bO. K. Rice, H. C. Ramsperger, J. Am. Chem. Soc. 1927, 49, 1617–1629;
- 5cR. A. Marcus, J. Chem. Phys. 1952, 20, 352–354;
- 5dR. A. Marcus, J. Chem. Phys. 1952, 20, 355–359.
- 6J. I. Steinfeld, J. S. Francisco, W. L. Hase, Chemical Kinetics and Dynamics, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1998.
- 7
- 7aM. B. Reyes, B. K. Carpenter, J. Am. Chem. Soc. 2000, 122, 10163–10176;
- 7bB. K. Carpenter, Annu. Rev. Phys. Chem. 2005, 56, 57–89;
- 7cB. K. Carpenter, Chem. Rev. 2013, 113, 7265–7286.
- 8
- 8aC. Doubleday, G. Li, W. L. Hase, Phys. Chem. Chem. Phys. 2002, 4, 304–312;
- 8bD. A. Singleton, C. Hang, M. J. Szymanski, M. P. Meyer, A. G. Leach, K. T. Kuwata, J. S. Chen, A. Greer, C. S. Foote, K. N. Houk, J. Am. Chem. Soc. 2003, 125, 1319–1328;
- 8cC. Doubleday, C. P. Suhrada, K. N. Houk, J. Am. Chem. Soc. 2006, 128, 90–94;
- 8dM. Schmittel, C. Vavilala, R. Jaquet, Angew. Chem. 2007, 119, 7036–7039;
10.1002/ange.200700709 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 6911–6914;
- 8eM. Hamaguchi, M. Nakaishi, T. Nagai, T. Nakamura, M. Abe, J. Am. Chem. Soc. 2007, 129, 12981–12988.
- 9A. Bach, J. M. Hostettler, P. Chen, J. Chem. Phys. 2006, 125, 024304.
- 10A. E. Litovitz, I. Keresztes, B. K. Carpenter, J. Am. Chem. Soc. 2008, 130, 12085–12094.
- 11Y. Oyola, D. A. Singleton, J. Am. Chem. Soc. 2009, 131, 3130–3131.
- 12Z. Wang, J. S. Hirschi, D. A. Singleton, Angew. Chem. 2009, 121, 9320–9323; Angew. Chem. Int. Ed. 2009, 48, 9156–9159.
- 13T. Bekele, C. F. Christian, M. A. Lipton, D. A. Singleton, J. Am. Chem. Soc. 2005, 127, 9216–9223.
- 14L. Xu, C. E. Doubleday, K. N. Houk, J. Am. Chem. Soc. 2011, 133, 17848–17854.
- 15
- 15aH. E. Zimmerman, G. L. Grunewald, J. Am. Chem. Soc. 1966, 88, 183–184;
- 15bE. Ciganek, J. Am. Chem. Soc. 1966, 88, 2882–2883;
- 15cH. E. Zimmerman, R. W. Binkley, R. S. Givens, M. A. Sherwin, J. Am. Chem. Soc. 1967, 89, 3932–3933.
- 16M. Reguero, F. Bernardi, H. Jones, M. Olivucci, I. N. Ragazos, M. A. Robb, J. Am. Chem. Soc. 1993, 115, 2073–2074.
- 17
- 17aL. Xu, C. E. Doubleday, K. N. Houk, J. Am. Chem. Soc. 2010, 132, 3029–3037;
- 17bL. Xu, C. E. Doubleday, K. N. Houk, Angew. Chem. 2009, 121, 2784–2786; Angew. Chem. Int. Ed. 2009, 48, 2746–2748;
- 17cC. Doubleday, K. Bolton, W. L. Hase, J. Phys. Chem. A 1998, 102, 3648–3658.
- 18Transition zone for TS-I (TZ1) was defined as the subset of sampled C11C14a bond lengths with a deviation below the 98th percentile of the bond length at the saddle point of TS-I. Similarly, the transition zone for TS-II (TZ2) was defined as the geometries deviated below the 98th percentile with respect to the broken C10C14a bond at the saddle point of TS-II. The values derived from the productive trajectories for TZ1 and TZ2 at 298 K are (1.91±0.09) Å for the forming C11C4a bond and (1.76±0.09) Å for the breaking C10C4a bond, respectively.
- 19K. Black, P. Liu, L. Xu, C. Doubleday, K. N. Houk Proc. Natl. Acad. Sci. USA 2012, 109, 12860–12865.
- 20J. A. Nummela, B. K. Carpenter, J. Am. Chem. Soc. 2002, 124, 8512–8513.
- 21L. Yang, R. Sun, W. L. Hase, J. Chem. Theory Comput. 2011, 7, 3478–3483.
- 22M. Olivucci, A. Lami, F. Santoro, Angew. Chem. 2005, 117, 5248–5251;
10.1002/ange.200501236 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 5118–5121.
- 23
- 23aB. K. Carpenter, J. Am. Chem. Soc. 1995, 117, 6336–6344;
- 23bL. M. Goldman, D. R. Glowacki, B. K. Carpenter, J. Am. Chem. Soc. 2011, 133, 5312–5318.
- 24
- 24aB. K. Carpenter, J. Phys. Org. Chem. 2003, 16, 858–868;
- 24bB. K. Carpenter, Angew. Chem. 1998, 110, 3532–3543;
10.1002/(SICI)1521-3757(19981217)110:24<3532::AID-ANGE3532>3.0.CO;2-4 Google ScholarAngew. Chem. Int. Ed. 1998, 37, 3340–3350.10.1002/(SICI)1521-3773(19981231)37:24<3340::AID-ANIE3340>3.0.CO;2-1 PubMed Web of Science® Google Scholar
- 25B. K. Carpenter, J. Pittner, L. Veis, J. Phys. Chem. A 2009, 113, 10557–10563.
- 26
- 26aP. A. Leber, J. E. Baldwin, Acc. Chem. Res. 2002, 35, 279–287;
- 26bJ. E. Baldwin, Chem. Rev. 2003, 103, 1197–1212.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.