Switching Demethylation Activities between AlkB Family RNA/DNA Demethylases through Exchange of Active-Site Residues†
Chenxu Zhu
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871 (China)
Search for more papers by this authorCorresponding Author
Prof. Chengqi Yi
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871 (China)
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871 (China)Search for more papers by this authorChenxu Zhu
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871 (China)
Search for more papers by this authorCorresponding Author
Prof. Chengqi Yi
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871 (China)
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871 (China)Search for more papers by this authorThis work was supported by the National Natural Science Foundation of China (No. 31270838) and the National Basic Research Foundation of China (No. 2014CB964900). We also thank the Shanghai Synchrotron Radiation Facility (BL17U) and Dr. F. Yu for assistance with X-ray data collection.
Abstract
The AlkB family demethylases AlkB, FTO, and ALKBH5 recognize differentially methylated RNA/DNA substrates, which results in their distinct biological roles. Here we identify key active-site residues that contribute to their substrate specificity. Swapping such active-site residues between the demethylases leads to partially switched demethylation activities. Combined evidence from X-ray structures and enzyme kinetics suggests a role of the active-site residues in substrate recognition. Such a divergent active-site sequence may aid the design of selective inhibitors that can discriminate these homologue RNA/DNA demethylases.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201310050_sm_miscellaneous_information.pdf1.5 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. A. Pastor, L. Aravind, A. Rao, Nat. Rev. Mol. Cell Biol. 2013, 14, 341–356;
- 1bY. Fu, C. He, Curr. Opin. Chem. Biol. 2012, 16, 516–524.
- 2
- 2aP. O. Falnes, R. F. Johansen, E. Seeberg, Nature 2002, 419, 178–182;
- 2bS. C. Trewick, T. F. Henshaw, R. P. Hausinger, T. Lindahl, B. Sedgwick, Nature 2002, 419, 174–178;
- 2cP. A. Aas et al., Nature 2003, 421, 859–863;
- 2dR. Ougland, C. M. Zhang, A. Liiv, R. F. Johansen, E. Seeberg, Y. M. Hou, J. Remme, P. O. Falnes, Mol. Cell 2004, 16, 107–116;
- 2eP. Falnes, M. Bjørås, P. A. Aas, O. Sundheim, E. Seeberg, Nucleic Acids Res. 2004, 32, 3456–3461.
- 3
- 3aJ. Ringvoll, L. M. Nordstrand et al., EMBO J. 2006, 25, 2189–2198;
- 3bT. Duncan, S. C. Trewick, P. Koivisto, P. A. Bates, T. Lindahl, B. Sedgwick, Proc. Natl. Acad. Sci. USA 2002, 99, 16660–16665;
- 3cS. Dango, N. Mosammaparast, M. E. Sowa, L. J. Xiong, F. Wu, K. Park, M. Rubin, S. Gygi, J. W. Harper, Y. Shi, Mol. Cell 2011, 44, 373–384.
- 4
- 4aT. M. Frayling et al., Science 2007, 316, 889–894;
- 4bC. Dina et al., Nat. Genet. 2007, 39, 724–726;
- 4cA. Scuteri et al., PLoS Genet. 2007, 3, e 115;
- 4dJ. Fischer, L. Koch, C. Emmerling, J. Vierkotten, T. Peters, J. C. Brüning, U. Rüther, Nature 2009, 458, 894–898;
- 4eC. Church et al., Nat. Genet. 2010, 42, 1086–1092.
- 5
- 5aT. Gerken et al., Science 2007, 318, 1469–1472;
- 5bG. Jia, C. G. Yang, S. Yang, X. Jian, C. Yi, Z. Zhou, C. He, FEBS Lett. 2008, 582, 3313–3319.
- 6G. Jia, Y. Fu, X. Zhao, Q. Dai, G. Zheng, Y. Yang, C. Yi, T. Lindahl, T. Pan, Y. G. Yang, C. He, Nat. Chem. Biol. 2011, 7, 885–887.
- 7G. Zheng, J. A. Dahl et al., Mol. Cell 2013, 49, 18–29.
- 8
- 8aB. Sedgwick, Nat. Rev. Mol. Cell Biol. 2004, 5, 148–157;
- 8bF. Drabløs, E. Feyzi, P. A. Aas, C. B. Vaagbo, B. Kavli, M. S. Bratlie, J. Pena-Diaz, M. Otterlei, G. Slupphaug, H. E. Krokan, DNA Repair 2004, 3, 1389–1407;
- 8cY. Mishina, E. M. Duguid, C. He, Chem. Rev. 2006, 106, 215–232.
- 9
- 9aK. D. Meyer, Y. Saletore, P. Zumbo, O. Elemento, C. E. Mason, S. R. Jaffrey, Cell 2012, 149, 1635–1646;
- 9bG. Jia, Y. Fu, C. He, Trends Genet. 2013, 29, 108–115;
- 9cG. Zheng, J. A. Dahl, Y. Niu, Y. Fu, A. Klungland, Y. G. Yang, C. He, RNA Biol. 2013, 10, 915–918;
- 9dD. Dominissini et al., Nature 2012, 485, 201–206.
- 10Z. Han, T. Niu, J. Chang, X. Lei, M. Zhao, Q. Wang, W. Cheng, J. Wang, Y. Feng, J. Chai, Nature 2010, 464, 1205–1209.
- 11O. Sundheim, C. B. Vagbo, M. Bjoras, M. M. Sousa, V. Talstad, P. A. Aas, F. Drablos, H. E. Krokan, J. A. Tainer, G. Slupphaug, EMBO J. 2006, 25, 3389–3397.
- 12aB. Yu, W. C. Edstrom, J. Benach, Y. Hamuro, P. C. Weber, B. R. Gibney, J. F. Hunt, Nature 2006, 439, 879–884;
- 12bC. G. Yang, C. Yi, E. M. Duguid, C. T. Sullivan, X. Jian, P. A. Rice, C. He, Nature 2008, 452, 961–965;
- 12cC. Yi, G. Jia, G. Hou, Q. Dai, W. Zhang, G. Zheng, X. Jian, C. G. Yang, Q. Cui, C. He, Nature 2010, 468, 330–333;
- 12dC. Yi et al., Nat. Struct. Mol. Biol. 2012, 19, 671–676;
- 12eP. J. Holland, T. Hollis, PLoS One 2010, 5, e 8680;
- 12fB. Yu, J. F. Hunt, Proc. Natl. Acad. Sci. USA 2009, 106, 14315–14320;
- 12gA. M. Maciejewska et al., J. Biol. Chem. 2013, 288, 432–441.
- 13D. Li, J. C. Delaney, C. M. Page, X. Yang, A. S. Chen, C. Wong, C. L. Drennan, J. M. Essigmann, J. Am. Chem. Soc. 2012, 134, 8896–8901.
- 14
- 14aB. Chen et al., J. Am. Chem. Soc. 2012, 134, 17963–17971;
- 14bW. Aik, M. Demetriades, M. K. Hamdan, E. A. Bagg, K. K. Yeoh, C. Lejeune, Z. Zhang, M. A. McDonough, C. J. Schofield, J. Med. Chem. 2013, 56, 3680–3688.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.