Gemischte Übergangsmetalloxide: Design, Synthese und energierelevante Anwendungen
Dr. Changzhou Yuan
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapur, 637459 (Singapur) http://www.ntu.edu.sg/home/xwlou/
Diese Autoren trugen gleichermaßen zu dieser Arbeit bei.
Search for more papers by this authorHao Bin Wu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapur, 637459 (Singapur) http://www.ntu.edu.sg/home/xwlou/
Diese Autoren trugen gleichermaßen zu dieser Arbeit bei.
Search for more papers by this authorCorresponding Author
Prof. Yi Xie
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei, Anhui 230026 (V.R. China)
Yi Xie, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei, Anhui 230026 (V.R. China)
Xiong Wen (David) Lou, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapur, 637459 (Singapur) http://www.ntu.edu.sg/home/xwlou/
Search for more papers by this authorCorresponding Author
Prof. Xiong Wen (David) Lou
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapur, 637459 (Singapur) http://www.ntu.edu.sg/home/xwlou/
Yi Xie, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei, Anhui 230026 (V.R. China)
Xiong Wen (David) Lou, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapur, 637459 (Singapur) http://www.ntu.edu.sg/home/xwlou/
Search for more papers by this authorDr. Changzhou Yuan
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapur, 637459 (Singapur) http://www.ntu.edu.sg/home/xwlou/
Diese Autoren trugen gleichermaßen zu dieser Arbeit bei.
Search for more papers by this authorHao Bin Wu
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapur, 637459 (Singapur) http://www.ntu.edu.sg/home/xwlou/
Diese Autoren trugen gleichermaßen zu dieser Arbeit bei.
Search for more papers by this authorCorresponding Author
Prof. Yi Xie
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei, Anhui 230026 (V.R. China)
Yi Xie, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei, Anhui 230026 (V.R. China)
Xiong Wen (David) Lou, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapur, 637459 (Singapur) http://www.ntu.edu.sg/home/xwlou/
Search for more papers by this authorCorresponding Author
Prof. Xiong Wen (David) Lou
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapur, 637459 (Singapur) http://www.ntu.edu.sg/home/xwlou/
Yi Xie, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei, Anhui 230026 (V.R. China)
Xiong Wen (David) Lou, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapur, 637459 (Singapur) http://www.ntu.edu.sg/home/xwlou/
Search for more papers by this authorAbstract
Seit kurzem findet eine Familie gemischter Übergangsmetalloxide (mixed transition-metal oxides, MTMOs; beschrieben durch AxB3−xO4; A, B=Co, Ni, Zn, Mn, Fe usw.) mit stöchiometrischen oder gar nichtstöchiometrischen Zusammensetzungen (typischerweise in Spinellstruktur) weltweit Interesse. Diese MTMOs dürften dank ihrer ausgezeichneten elektrochemischen Eigenschaften große Bedeutung für kostengünstige und umweltfreundliche Technologien zur Energiespeicherung/-umwandlung erlangen. In diesem Aufsatz fassen wir die jüngsten Fortschritte beim rationalen Design von MTMOs mit steuerbaren Formen, Größen, Zusammensetzungen und Mikro-/Nanostrukturen sowie ihren Anwendungsmöglichkeiten zusammen, z. B. als Elektrodenmaterialien für Lithium-Ionen-Batterien und elektrochemische Kondensatoren oder als effiziente Elektrokatalysatoren bei der Sauerstoffreduktionsreaktion in Sauerstoff/Luft-Batterien und Brennstoffzellen. Zum Schluss diskutieren wir die weitere mögliche Entwicklung von MTMOs für die nächste Technologiegeneration der elektrochemischen Energiespeicherung/-umwandlung.
References
- 1A. L. M. Reddy, S. R. Gowda, M. M. Shaijumon, P. M. Ajayan, Adv. Mater. 2012, 24, 5045–5064.
- 2Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev. 2011, 111, 3577–3613.
- 3A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366–377.
- 4P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845–854.
- 5J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou, Adv. Mater. 2012, 24, 5166–5180.
- 6C. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Adv. Mater. 2010, 22, E 28–E62.
- 7A. Manthiram, A. Vadivel Murugan, A. Sarkar, T. Muraliganth, Energy Environ. Sci. 2008, 1, 621–638.
- 8J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167–1176.
- 9L. Zhou, D. Zhao, X. W. Lou, Adv. Mater. 2012, 24, 745–748.
- 10T.-Y. Wei, C.-H. Chen, H.-C. Chien, S.-Y. Lu, C.-C. Hu, Adv. Mater. 2010, 22, 347–351.
- 11G. Zhang, L. Yu, H. B. Wu, H. E. Hoster, X. W. Lou, Adv. Mater. 2012, 24, 4609–4613.
- 12P. F. Teh, Y. Sharma, S. S. Pramana, M. Srinivasan, J. Mater. Chem. 2011, 21, 14999–15008.
- 13Z. Wang, L. Zhou, X. W. Lou, Adv. Mater. 2012, 24, 1903–1911.
- 14M. Hamdani, R. N. Singh, P. Chartier, Int. J. Electrochem. Sci. 2010, 5, 556–577.
- 15Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, J. Am. Chem. Soc. 2012, 134, 3517–3523.
- 16F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, J. Chen, Nat. Chem. 2011, 3, 79–84.
- 17L. Hu, L. Wu, M. Liao, X. Hu, X. Fang, Adv. Funct. Mater. 2012, 22, 998–1004.
- 18S. Trasatti, Electrodes of conductive metallic oxides Part A, Elsevier Scientific Pub. Co., 1980, S. 227.
- 19Q. Lu, J. G. Chen, J. Q. Xiao, Angew. Chem. 2013, 125, 1932–1940; Angew. Chem. Int. Ed. 2013, 52, 1882–1889.
- 20G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 2012, 41, 797–828.
- 21D. H. Deng, H. Pang, J. M. Du, J. W. Deng, S. J. Li, J. Chen, J. S. Zhang, Cryst. Res. Technol. 2012, 47, 1032–1038.
- 22F. M. Courtel, H. Duncan, Y. Abu-Lebdeh, I. J. Davidson, J. Mater. Chem. 2011, 21, 10206–10218.
- 23Y.-N. NuLi, Q.-Z. Qin, J. Power Sources 2005, 142, 292–297.
- 24S. Anwar, K. S. Muthu, V. Ganesh, N. Lakshminarasimhan, J. Electrochem. Soc. 2011, 158, A 976–A981.
- 25S. Sun, Z. Wen, J. Jin, Y. Cui, Y. Lu, Microporous Mesoporous Mater. 2013, 169, 242–247.
- 26N. Bahlawane, P. H. T. Ngamou, V. Vannier, T. Kottke, J. Heberle, K. Kohse-Hoeinghaus, Phys. Chem. Chem. Phys. 2009, 11, 9224–9232.
- 27Y. Sharma, N. Sharma, G. V. S. Rao, B. V. R. Chowdari, Solid State Ionics 2008, 179, 587–597.
- 28B. Ellis, P. Subramanya Herle, Y. H. Rho, L. F. Nazar, R. Dunlap, L. K. Perry, D. H. Ryan, Faraday Discuss. 2007, 134, 119–141.
- 29D. Pasero, N. Reeves, A. R. West, J. Power Sources 2005, 141, 156–158.
- 30W. Luo, X. Hu, Y. Sun, Y. Huang, J. Mater. Chem. 2012, 22, 8916–8921.
- 31G. Zhang, B. Y. Xia, C. Xiao, L. Yu, X. Wang, Y. Xie, X. W. Lou, Angew. Chem. 2013, 125, 8805–8809; Angew. Chem. Int. Ed. 2013, 52, 8643–8647.
- 32N. Du, Y. Xu, H. Zhang, J. Yu, C. Zhai, D. Yang, Inorg. Chem. 2011, 50, 3320–3324.
- 33H. Jiang, J. Ma, C. Li, Chem. Commun. 2012, 48, 4465–4467.
- 34S.-W. Kim, H.-W. Lee, P. Muralidharan, D.-H. Seo, W.-S. Yoon, D. K. Kim, K. Kang, Nano Res. 2011, 4, 505–510.
- 35H. Wang, Q. Gao, L. Jiang, Small 2011, 7, 2454–2459.
- 36C. Yuan, J. Li, L. Hou, L. Yang, L. Shen, X. Zhang, J. Mater. Chem. 2012, 22, 16084–16090.
- 37D. Zhang, Z. Tong, G. Xu, S. Li, J. Ma, Solid State Sci. 2009, 11, 113–117.
- 38G. Q. Zhang, H. B. Wu, H. E. Hoster, M. B. Chan-Park, X. W. Lou, Energy Environ. Sci. 2012, 5, 9453–9456.
- 39C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, X. W. Lou, Adv. Funct. Mater. 2012, 22, 4592–4597.
- 40G. Q. Zhang, X. W. Lou, Adv. Mater. 2013, 25, 976–979.
- 41Y. Q. Wu, X. Y. Chen, P. T. Ji, Q. Q. Zhou, Electrochim. Acta 2011, 56, 7517–7522.
- 42Y. Yang, Y. Zhao, L. Xiao, L. Zhang, Electrochem. Commun. 2008, 10, 1117–1120.
- 43H. Zhao, H. Jia, S. Wang, D. Xue, Z. Zheng, J. Exp. Nanosci. 2011, 6, 75–83.
- 44M. Zhang, S. Guo, L. Zheng, G. Zhang, Z. Hao, L. Kang, Z.-H. Liu, Electrochim. Acta 2013, 87, 546–553.
- 45H.-C. Chien, W.-Y. Cheng, Y.-H. Wang, S.-Y. Lu, Adv. Funct. Mater. 2012, 22, 5038–5043.
- 46J. Zhao, F. Wang, P. Su, M. Li, J. Chen, Q. Yang, C. Li, J. Mater. Chem. 2012, 22, 13328–13333.
- 47Z. Xing, Z. Ju, J. Yang, H. Xu, Y. Qian, Nano Res. 2012, 5, 477–485.
- 48D. Zhang, X. Zhang, X. Ni, J. Song, H. Zheng, Chem. Phys. Lett. 2006, 426, 120–123.
- 49X. Lai, J. E. Halpert, D. Wang, Energy Environ. Sci. 2012, 5, 5604–5618.
- 50X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater. 2008, 20, 3987–4019.
- 51Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, D. Chen, G. Shen, J. Mater. Chem. 2012, 22, 21647–21653.
- 52T. Wu, J. Y. Li, L. R. Hou, C. Z. Yuan, L. Yang, X. G. Zhang, Electrochim. Acta 2012, 81, 172–178.
- 53J. Xiao, S. Yang, RSC Adv. 2011, 1, 588–595.
- 54X. Guo, X. Lu, X. Fang, Y. Mao, Z. Wang, L. Chen, X. Xu, H. Yang, Y. Liu, Electrochem. Commun. 2010, 12, 847–850.
- 55L. Jin, Y. Qiu, H. Deng, W. Li, H. Li, S. Yang, Electrochim. Acta 2011, 56, 9127–9132.
- 56J. Li, S. Xiong, X. Li, Y. Qian, Nanoscale 2013, 5, 2045–2054.
- 57J. F. Li, S. L. Xiong, Y. R. Liu, Z. C. Ju, Y. T. Qian, ACS Appl. Mater. Interfaces 2013, 5, 981–988.
- 58J. Li, S. Xiong, X. Li, Y. Qian, J. Mater. Chem. 2012, 22, 23254–23259.
- 59L. Xiao, Y. Yang, J. Yin, Q. Li, L. Zhang, J. Power Sources 2009, 194, 1089–1093.
- 60C. Gong, Y. J. Bai, Y. X. Qi, N. Lun, J. Feng, Electrochim. Acta 2013, 90, 119–127.
- 61Y. NuLi, P. Zhang, Z. Guo, H. Liu, J. Yang, Electrochem. Solid-State Lett. 2008, 11, A 64–A67.
- 62Q. Che, F. Zhang, X.-G. Zhang, X.-J. Lu, B. Ding, J.-J. Zhu, Acta Phys.-Chim. Sin. 2012, 28, 837–842.
- 63R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, Adv. Mater. 2001, 13, 677–681.
- 64X. Wang, X. Han, M. Lim, N. Singh, C. L. Gan, M. Jan, P. S. Lee, J. Phys. Chem. C 2012, 116, 12448–12454.
- 65Y. Wang, J. Park, B. Sun, H. Ahn, G. Wang, Chem. Asian J. 2012, 7, 1940–1946.
- 66Y. S. Fu, Y. H. Wan, H. Xia, X. Wang, J. Power Sources 2012, 213, 338–342.
- 67S. Liu, J. Xie, C. Fang, G. Cao, T. Zhu, X. Zhao, J. Mater. Chem. 2012, 22, 19738–19743.
- 68Q. J. Xiang, J. G. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782–796.
- 69Z. Y. Wang, Z. C. Wang, W. T. Liu, W. Xiao, X. W. Lou, Energy Environ. Sci. 2013, 6, 87–91.
- 70B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 2012, 12, 3005–3011.
- 71J. Liu, C. Liu, Y. Wan, W. Liu, Z. Ma, S. Ji, J. Wang, Y. Zhou, P. Hodgson, Y. Li, CrystEngComm 2013, 15, 1578–1585.
- 72L. Yu, G. Zhang, C. Yuan, X. W. Lou, Chem. Commun. 2013, 49, 137–139.
- 73E. Yoo, H. Zhou, Acs Nano 2011, 5, 3020–3026.
- 74V. S. Bagotzky, N. A. Shumilova, E. I. Khrushcheva, Electrochim. Acta 1976, 21, 919–924.
- 75P. A. Christensen, A. Hamnett, D. Linares-Moya, Phys. Chem. Chem. Phys. 2011, 13, 5206–5214.
- 76H. Wang, Y. Yang, Y. Liang, G. Zheng, Y. Li, Y. Cui, H. Dai, Energy Environ. Sci. 2012, 5, 7931–7935.
- 77L. Wang, X. Zhao, Y. Lu, M. Xu, D. Zhang, R. S. Ruoff, K. J. Stevenson, J. B. Goodenough, J. Electrochem. Soc. 2011, 158, A 1379–A1382.
- 78X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Adv. Mater. 2008, 20, 258–262.
- 79B. Das, M. V. Reddy, G. V. S. Rao, B. V. R. Chowdari, J. Mater. Chem. 2012, 22, 17505–17510.
- 80R. Alcántara, M. Jaraba, P. Lavela, J. L. Tirado, Chem. Mater. 2002, 14, 2847–2848.
- 81P. Lavela, J. L. Tirado, C. Vidal-Abarca, Electrochim. Acta 2007, 52, 7986–7995.
- 82Y. Sharma, N. Sharma, G. V. S. Rao, B. V. R. Chowdari, J. Power Sources 2007, 173, 495–501.
- 83C. C. Ai, M. C. Yin, C. W. Wang, J. T. Sun, J. Mater. Sci. 2004, 39, 1077–1079.
- 84Y. Sharma, N. Sharma, G. V. Subba Rao, B. V. R. Chowdari, Adv. Funct. Mater. 2007, 17, 2855–2861.
- 85K. H. Chang, C. C. Hu, Appl. Phys. Lett. 2006, 88, 193102.
- 86D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 2006, 5, 987–994.
- 87C. Wang, X. Zhang, D. Zhang, C. Yao, Y. Ma, Electrochim. Acta 2012, 63, 220–227.
- 88Q. Lu, Y. Chen, W. Li, J. G. Chen, J. Q. Xiao, F. Jiao, J. Mater. Chem. A 2013, 1, 2331–2336.
- 89H.-W. Wang, Z.-A. Hu, Y.-Q. Chang, Y.-L. Chen, H.-Y. Wu, Z.-Y. Zhang, Y.-Y. Yang, J. Mater. Chem. 2011, 21, 10504–10511.
- 90G. Zhang, X. W. Lou, Sci. Rep. 2013, 3, 1470–1470.
- 91R. R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.-H. Han, H. Ahn, J. Alloys Compd. 2011, 509, 6677–6682.
- 92Q. Wang, X. Wang, B. Liu, G. Yu, X. Hou, D. Chen, G. Shen, J. Mater. Chem. A 2013, 1, 2468–2473.
- 93M. De Koninck, B. Marsan, Electrochim. Acta 2008, 53, 7012–7021.
- 94F. Bidault, D. J. L. Brett, P. H. Middleton, N. P. Brandon, J. Power Sources 2009, 187, 39–48.
- 95L. Zhou, H. B. Wu, T. Zhu, X. W. Lou, J. Mater. Chem. 2012, 22, 827–829.
- 96F. M. Courtel, Y. Abu-Lebdeh, I. J. Davidson, Electrochim. Acta 2012, 71, 123–127.
- 97Y. Deng, S. Tang, Q. Zhang, Z. Shi, L. Zhang, S. Zhan, G. Chen, J. Mater. Chem. 2011, 21, 11987–11995.
- 98J. A. Schmidt, A. E. Sagua, J. C. Bazán, M. R. Prat, M. E. Braganza, E. Morán, Mater. Res. Bull. 2005, 40, 635–642.
- 99L. Qu, Y. Liu, J.-B. Baek, L. Dai, Acs Nano 2010, 4, 1321–1326.
- 100J. Liu, Y. Li, H. Fan, Z. Zhu, J. Jiang, R. Ding, Y. Hu, X. Huang, Chem. Mater. 2010, 22, 212–217.
- 101M. V. Reddy, T. Yu, C.-H. Sow, Z. X. Shen, C. T. Lim, G. V. S. Rao, B. V. R. Chowdari, Adv. Funct. Mater. 2007, 17, 2792–2799.
- 102P. Lavela, J. L. Tirado, J. Power Sources 2007, 172, 379–387.
- 103M. Li, Y.-X. Yin, C. Li, F. Zhang, L.-J. Wan, S. Xu, D. G. Evans, Chem. Commun. 2012, 48, 410–412.
- 104Z. H. Li, T. P. Zhao, X. Y. Zhan, D. S. Gao, Q. Z. Xiao, G. T. Lei, Electrochim. Acta 2010, 55, 4594–4598.
- 105Y. Wang, D. W. Su, A. Ung, J. H. Ahn, G. X. Wang, Nanotechnology 2012, 23, 055402.
- 106R. Alcántara, M. Jaraba, P. Lavela, J. L. Tirado, J. C. Jumas, J. Olivier-Fourcade, Electrochem. Commun. 2003, 5, 16–21.
- 107B. Senthilkumar, R. K. Selvan, P. Vinothbabu, I. Perelshtein, A. Gedanken, Mater. Chem. Phys. 2011, 130, 285–292.
- 108M. Bomio, P. Lavela, J. L. Tirado, J. Solid State Electrochem. 2008, 12, 729–737.
- 109N. Sivakumar, S. R. P. Gnanakan, K. Karthikeyan, S. Amaresh, W. S. Yoon, G. J. Park, Y. S. Lee, J. Alloys Compd. 2011, 509, 7038–7041.
- 110Z. L. Zhang, Y. H. Wang, Q. Q. Tan, Z. Y. Zhong, F. B. Su, J. Colloid Interface Sci. 2013, 398, 185–192.
- 111N. Sharma, K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, J. Power Sources 2003, 124, 204–212.
- 112Y. N. NuLi, Y. Q. Chu, Q. Z. Qin, J. Electrochem. Soc. 2004, 151, A 1077–A1083.
- 113Y. Sharma, N. Sharma, G. V. S. Rao, B. V. R. Chowdari, Electrochim. Acta 2008, 53, 2380–2385.
- 114P. Sen, A. De, Electrochim. Acta 2010, 55, 4677–4684.
- 115S.-L. Kuo, N.-L. Wu, Electrochem. Solid-State Lett. 2005, 8, A 495–A499.
- 116S.-L. Kuo, N.-L. Wu, Electrochem. Solid-State Lett. 2007, 10, A 171–A175.
- 117Y.-P. Lin, N.-L. Wu, J. Power Sources 2011, 196, 851–854.
- 118J. S. Chen, X. W. Lou, Small 2013, 9, 1877–1893.
- 119F. Belliard, P. A. Connor, J. T. S. Irvine, Solid State Ionics 2000, 135, 163–167.
- 120P. A. Connor, J. T. S. Irvine, J. Power Sources 2001, 97–98, 223–225.
- 121P. A. Connor, J. T. S. Irvine, Electrochim. Acta 2002, 47, 2885–2892.
- 122A. Rong, X. P. Gao, G. R. Li, T. Y. Yan, H. Y. Zhu, J. Q. Qu, D. Y. Song, J. Phys. Chem. B 2006, 110, 14754–14760.
- 123F. Huang, Z. Y. Yuan, H. Zhan, Y. H. Zhou, J. T. Sun, Mater. Lett. 2003, 57, 3341–3345.
- 124N. Sharma, K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Electrochem. Commun. 2002, 4, 947–952.
- 125H. Li, P. Balaya, J. Maier, J. Electrochem. Soc. 2004, 151, A 1878–A1885.
- 126Z. Y. Wang, Z. C. Wang, H. B. Wu, X. W. Lou, Sci. Rep. 2013, 3, 1391–1391.
- 127L.-H. Su, X.-G. Zhang, C.-H. Mi, B. Gao, Y. Liu, Phys. Chem. Chem. Phys. 2009, 11, 2195–2202.
- 128Y. Wang, Z. Hong, M. Wei, Y. Xia, Adv. Funct. Mater. 2012, 22, 5185–5193.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.