End-Truncated LAMB1 Causes a Hippocampal Memory Defect and a Leukoencephalopathy
Chaker Aloui PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
Search for more papers by this authorDominique Hervé MD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Neurologie, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Paris, France
These authors contributed equally to this work.
Search for more papers by this authorGaelle Marenne PhD
Université de Brest, Inserm, EFS, CHU Brest, UMR 1078, GGB, Brest, France
These authors contributed equally to this work.
Search for more papers by this authorFlorian Savenier MD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
These authors contributed equally to this work.
Search for more papers by this authorKilan Le Guennec PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
These authors contributed equally to this work.
Search for more papers by this authorFrancoise Bergametti PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
These authors contributed equally to this work.
Search for more papers by this authorEdgard Verdura PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
Search for more papers by this authorThomas E. Ludwig PhD
Université de Brest, Inserm, EFS, CHU Brest, UMR 1078, GGB, Brest, France
Search for more papers by this authorJessica Lebenberg PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
Search for more papers by this authorWaliyde Jabeur MD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
Search for more papers by this authorHélène Morel PharmD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
Search for more papers by this authorThibault Coste PharmD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
Search for more papers by this authorGeneviève Demarquay MD
Hôpital Neurologique, Hospices Civils de Lyon, Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (Dycog), INSERM U1028, CNRS UMR5292, Lyon, France
Search for more papers by this authorPanagiotis Bachoumas MD
Centre Hospitalier Public Du Cotentin, Cherbourg-en-Cotentin, France
Search for more papers by this authorJulien Cogez MD
CHU Caen, Department of Neurology, CHU de Caen Côte de Nacre, Caen, France
Search for more papers by this authorGuillaume Mathey MD
Neurology Unit, University Hospital of Nancy, Nancy, France
Search for more papers by this authorEmilien Bernard MD
Department of Neurology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
Institut NeuroMyoGène, INSERM-CNRS-UMR, Université Claude Bernard, Lyon, France
Search for more papers by this authorFREX consortium
Search for more papers by this authorHugues Chabriat MD, PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Neurologie, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Paris, France
Search for more papers by this authorEmmanuelle Génin PhD
Université de Brest, Inserm, EFS, CHU Brest, UMR 1078, GGB, Brest, France
Search for more papers by this authorCorresponding Author
Elisabeth Tournier-Lasserve MD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
Address correspondence to Dr Tournier-Lasserve, INSERM UMR 1141, 48 Boulevard Sérurier, 75019 Paris, France. E-mail: [email protected]
Search for more papers by this authorChaker Aloui PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
Search for more papers by this authorDominique Hervé MD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Neurologie, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Paris, France
These authors contributed equally to this work.
Search for more papers by this authorGaelle Marenne PhD
Université de Brest, Inserm, EFS, CHU Brest, UMR 1078, GGB, Brest, France
These authors contributed equally to this work.
Search for more papers by this authorFlorian Savenier MD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
These authors contributed equally to this work.
Search for more papers by this authorKilan Le Guennec PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
These authors contributed equally to this work.
Search for more papers by this authorFrancoise Bergametti PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
These authors contributed equally to this work.
Search for more papers by this authorEdgard Verdura PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
Search for more papers by this authorThomas E. Ludwig PhD
Université de Brest, Inserm, EFS, CHU Brest, UMR 1078, GGB, Brest, France
Search for more papers by this authorJessica Lebenberg PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
Search for more papers by this authorWaliyde Jabeur MD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
Search for more papers by this authorHélène Morel PharmD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
Search for more papers by this authorThibault Coste PharmD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
Search for more papers by this authorGeneviève Demarquay MD
Hôpital Neurologique, Hospices Civils de Lyon, Lyon Neuroscience Research Center (CRNL), Brain Dynamics and Cognition Team (Dycog), INSERM U1028, CNRS UMR5292, Lyon, France
Search for more papers by this authorPanagiotis Bachoumas MD
Centre Hospitalier Public Du Cotentin, Cherbourg-en-Cotentin, France
Search for more papers by this authorJulien Cogez MD
CHU Caen, Department of Neurology, CHU de Caen Côte de Nacre, Caen, France
Search for more papers by this authorGuillaume Mathey MD
Neurology Unit, University Hospital of Nancy, Nancy, France
Search for more papers by this authorEmilien Bernard MD
Department of Neurology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
Institut NeuroMyoGène, INSERM-CNRS-UMR, Université Claude Bernard, Lyon, France
Search for more papers by this authorFREX consortium
Search for more papers by this authorHugues Chabriat MD, PhD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
AP-HP, Groupe Hospitalier Saint-Louis Lariboisière-Fernand-Widal, Service de Neurologie, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l'Œil (CERVCO), Paris, France
Search for more papers by this authorEmmanuelle Génin PhD
Université de Brest, Inserm, EFS, CHU Brest, UMR 1078, GGB, Brest, France
Search for more papers by this authorCorresponding Author
Elisabeth Tournier-Lasserve MD
Université de Paris, INSERM UMR 1141 NeuroDiderot, Paris, France
AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
Address correspondence to Dr Tournier-Lasserve, INSERM UMR 1141, 48 Boulevard Sérurier, 75019 Paris, France. E-mail: [email protected]
Search for more papers by this authorAbstract
Objective
The majority of patients with a familial cerebral small vessel disease (CSVD) referred for molecular screening do not show pathogenic variants in known genes. In this study, we aimed to identify novel CSVD causal genes.
Methods
We performed a gene-based collapsing test of rare protein-truncating variants identified in exome data of 258 unrelated CSVD patients of an ethnically matched control cohort and of 2 publicly available large-scale databases, gnomAD and TOPMed. Western blotting was used to investigate the functional consequences of variants. Clinical and magnetic resonance imaging features of mutated patients were characterized.
Results
We showed that LAMB1 truncating variants escaping nonsense-mediated messenger RNA decay are strongly overrepresented in CSVD patients, reaching genome-wide significance (p < 5 × 10−8). Using 2 antibodies recognizing the N- and C-terminal parts of LAMB1, we showed that truncated forms of LAMB1 are expressed in the endogenous fibroblasts of patients and trapped in the cytosol. These variants are associated with a novel phenotype characterized by the association of a hippocampal type episodic memory defect and a diffuse vascular leukoencephalopathy.
Interpretation
These findings are important for diagnosis and clinical care, to avoid unnecessary and sometimes invasive investigations, and also from a mechanistic point of view to understand the role of extracellular matrix proteins in neuronal homeostasis. ANN NEUROL 2021;90:962–975
Potential Conflicts of Interests
Nothing to report.
Supporting Information
Filename | Description |
---|---|
ana26242-sup-0001-TableS1.docxWord 2007 document , 12.9 KB | Table S1. Gene-based burden test (Fisher exact) of rare High-Impact and missense damaging variants between CSVD patients (n = 207) and FREX controls (n = 566). Missense damaging variants included possibly and probably damaging predicted by PolyPhen V2.2.2 |
ana26242-sup-0002-TableS2.xlsxExcel 2007 spreadsheet , 170.8 KB | Table S2. Gene based burden test comparing all rare PTV carriers for the top 7 genes in CSVD versus gnomAD v3 and TOPMed Freeze5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689–701.
- 2Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol 2019; 18: 684–696.
- 3Sarbu N, Shih RY, Jones RV, et al. White matter diseases with radiologic-pathologic correlation. Radiographics 2016; 36: 1426–1447.
- 4Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996; 383: 707–710.
- 5Verdura E, Hervé D, Scharrer E, et al. Heterozygous HTRA1 mutations are associated with autosomal dominant cerebral small vessel disease. Brain 2015; 138: 2347–2358.
- 6Verdura E, Hervé D, Bergametti F, et al. Disruption of a miR-29 binding site leading to COL4A1 upregulation causes pontine autosomal dominant microangiopathy with leukoencephalopathy. Ann Neurol 2016; 80: 741–753.
- 7Mancuso M, Arnold M, Bersano A, et al. Monogenic cerebral small-vessel diseases: diagnosis and therapy. Consensus recommendations of the European academy of neurology. Eur J Neurol 2020; 27: 909–927.
- 8Rutten-Jacobs LCA, Rost NS. Emerging insights from the genetics of cerebral small-vessel disease. Ann N Y Acad Sci 2020; 1471: 5–17.
- 9Naba A, Clauser KR, Hoersch S, et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 2012; 11:M111.014647.
- 10Joutel A, Haddad I, Ratelade J, Nelson MT. Perturbations of the cerebrovascular matrisome: a convergent mechanism in small vessel disease of the brain? J Cereb Blood Flow Metab 2016; 36: 143–157.
- 11Debette S, Strbian D, Wardlaw J, et al. Fourth European stroke science workshop. Eur Stroke J 2018; 3: 206–219.
- 12Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 2014; 95: 5–23.
- 13Nicolae DL. Association tests for rare variants. Annu Rev Genomics Hum Genet 2016; 17: 117–130.
- 14Povysil G, Petrovski S, Hostyk J, et al. Rare-variant collapsing analyses for complex traits: guidelines and applications. Nat Rev Genet 2019; 20: 747–759.
- 15Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet 1999; 8: 1893–1900.
- 16Dyle MC, Kolakada D, Cortazar MA, Jagannathan S. How to get away with nonsense: mechanisms and consequences of escape from nonsense-mediated RNA decay. WIREs RNA 2020; 11:e1560.
- 17Genin E, Redon R, Deleuze J-F, et al. The French exome (FREX) project: a population-based panel of Exomes to help filter out common local variants. Genet Epidemiol 2017; 41: 691–691.
- 18Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv E-Prints 2013; 1303:arXiv:1303.3997.
- 19van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 2013; 43:11.10.1–11.10.33.
- 20DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.
- 21Tarasov A, Vilella AJ, Cuppen E, et al. Sambamba: fast processing of NGS alignment formats. Bioinformatics 2015; 31: 2032–2034.
- 22Picard Toolkit repository. Picard Toolkit repository [Internet]. 2019. http://broadinstitute.github.io/picard/
- 23Hard-filtering germline short variants [Internet]. GATK [date unknown]. https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
- 24McLaren W, Gil L, Hunt SE, et al. The Ensembl variant effect predictor. Genome Biol 2016; 17: 122.
- 25Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.
- 26Leutenegger A-L, Prum B, Génin E, et al. Estimation of the inbreeding coefficient through use of genomic data. Am J Hum Genet 2003; 73: 516–523.
- 27Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020; 581: 434–443.
- 28Kowalski MH, Qian H, Hou Z, et al. Use of >100,000 NHLBI trans-Omics for precision medicine (TOPMed) consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet 2019; 15:e1008500.
- 29Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 2021; 590: 290–299.
- 30Kurosaki T, Maquat LE. Nonsense-mediated mRNA decay in humans at a glance. J Cell Sci 2016; 129: 461–467.
- 31Lindeboom RGH, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet 2016; 48: 1112–1118.
- 32Lindeboom RGH, Vermeulen M, Lehner B, Supek F. The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat Genet 2019; 51: 1645–1651.
- 33Le Hir H, Gatfield D, Izaurralde E, Moore MJ. The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 2001; 20: 4987–4997.
- 34Nagy E, Maquat LE. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 1998; 23: 198–199.
- 35Traynelis J, Silk M, Wang Q, et al. Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation. Genome Res 2017; 27: 1715–1729.
- 36Gelfman S, Dugger S, Moreno C, et al. A new approach for rare variation collapsing on functional protein domains implicates specific genic regions in ALS. Genome Res 2019; 29: 809–818.
- 37Cameron-Christie S, Wolock CJ, Groopman E, et al. Exome-based rare-variant analyses in CKD. J Am Soc Nephrol 2019; 30: 1109–1122.
- 38Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev 2019; 94: 283–306.
- 39Taniguchi Y, Ido H, Sanzen N, et al. The C-terminal region of laminin beta chains modulates the integrin binding affinities of laminins. J Biol Chem 2009; 284: 7820–7831.
- 40Pulido D, Hussain S-A, Hohenester E. Crystal structure of the Heterotrimeric integrin-binding region of Laminin-111. Structure 2017; 25: 530–535.
- 41Liu YB, Tewari A, Salameh J, et al. A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1. Elife 2015; 4: e11102.
- 42Yin Y, Kikkawa Y, Mudd JL, et al. Expression of laminin chains by central neurons: analysis with gene and protein trapping techniques. Genesis 2003; 36: 114–127.
- 43Radmanesh F, Caglayan AO, Silhavy JL, et al. Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities. Am J Hum Genet 2013; 92: 468–474.
- 44Tonduti D, Dorboz I, Renaldo F, et al. Cystic leukoencephalopathy with cortical dysplasia related to LAMB1 mutations. Neurology 2015; 84: 2195–2197.
- 45Okazaki T, Saito Y, Hayashida T, et al. Bilateral cerebellar cysts and cerebral white matter lesions with cortical dysgenesis: expanding the phenotype of LAMB1 gene mutations. Clin Genet 2018; 94: 391–392.
- 46Yasuda R, Yoshida T, Mizuta I, et al. Adult-onset leukoencephalopathy with homozygous LAMB1 missense mutation. Neurol Genet 2020; 6:e442.
- 47Chen Z-L, Indyk JA, Strickland S. The hippocampal laminin matrix is dynamic and critical for neuronal survival. Mol Biol Cell 2003; 14: 2665–2676.
- 48Yousif LF, di Russo J, Sorokin L. Laminin isoforms in endothelial and perivascular basement membranes. Cell Adh Migr 2013; 7: 101–110.
- 49Dityatev A, Schachner M, Sonderegger P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 2010; 11: 735–746.
- 50Ma J, Ma C, Li J, et al. Extracellular matrix proteins involved in Alzheimer's disease. Chem Weinh Bergstr Ger 2020; 26: 12101–12110.