Nonconventional Lipid Sources for Biodiesel Production
Larissa B. Bueno-Borges
University of São Paulo, São Paulo, Brazil
Search for more papers by this authorNaiane Sangaletti-Gerhard
University of São Paulo, São Paulo, Brazil
Search for more papers by this authorAdriano C. de Camargo
Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorMarisa A.B. Regitano-d'Arce
University of São Paulo, São Paulo, Brazil
Search for more papers by this authorLarissa B. Bueno-Borges
University of São Paulo, São Paulo, Brazil
Search for more papers by this authorNaiane Sangaletti-Gerhard
University of São Paulo, São Paulo, Brazil
Search for more papers by this authorAdriano C. de Camargo
Pontificia Universidad Católica de Chile, Santiago, Chile
Search for more papers by this authorMarisa A.B. Regitano-d'Arce
University of São Paulo, São Paulo, Brazil
Search for more papers by this authorAbstract
In the beginning, the diesel engine ran on vegetable oil, and it was peanut oil, an edible oil, that was first used for this purpose. As fossil fuels may become scarce and prices could escalate, soybean, canola/rapeseed, and other known oils are being used. As the discussion on food security, environmental protection, and energy generation continues, alternative sources of oils or fats for biodiesel synthesis are being studied. Waste frying oil and animal fats have also been used as feedstock for biodiesel production at the same time as nonedible oils (Jatropha, castor), oil industrial plants coproduct (palm fatty acid distillate), and unconventional lipid sources (microbial oils and sewage sludge) have now been brought into light. When it comes to long-term implementation of adoption in a commercial scale one of these so-called nonconventional lipid sources, what has been observed is that continuous production of regular quality feedstock, adequate infrastructure for collecting or harvesting, storing, processing, and transporting (logistics) prevails; only cost-effective choices have proven successful.
References
- 1You, Y.D., Shie, J.L., Chang, C.Y. et al. (2008). Energ. Fuel. 22: 182–189. doi: 10.1021/ef700295c.
- 2da Cunha, M.E., Krause, L.C., Moraes, M.S.A. et al. (2009). Fuel Process. Technol. 90: 570–575. doi: 10.1016/j.fuproc.2009.01.001.
- 3Demirbaş, A. (2009). Energ. Convers. Manag. 50: 14–34. doi: 10.1016/j.enconman.2008.09.001.
- 4Adewale, P., Dumont, M.J., and Ngadi, M. (2014). Energ. Technol. 2: 634–642. doi: 10.1002/ente.201402001.
- 5Peterson, A., Lee, P.I., Lai, M.C. et al. (2009). SAE Tech. Pap. Ser. 2009-01-11. doi: 10.4271/2009-01-1184.
10.4271/2009-01-1184 Google Scholar
- 6Keera, S.T., El Sabagh, S.M., and Taman, A.R. (2018). Egypt. J. Pet. 27: 979–984. doi: 10.1016/j.ejpe.2018.02.007.
10.1016/j.ejpe.2018.02.007 Google Scholar
- 7Tiwari, A.K., Kumar, A., and Raheman, H. (2007). Biomass Bioenerg. 31: 569–575. doi: 10.1016/j.biombioe.2007.03.003.
- 8Atabani, A.E., Silitonga, A.S., Ong, H.C. et al. (2013). Renew. Sust. Energ. Rev. 18: 211–245. doi: 10.1016/j.rser.2012.10.013.
- 9Ramadhas, S.J. and Muraleedharan, C. (2005). Fuel 84: 335–340. doi: 10.1016/j.fuel.2004.09.016.
- 10Ping, B.T.Y. and Yusof, M. (2009). Oil Palm Bull. 59: 5–11.
- 11Wells, T., Wei, Z., and Ragauskas, A. (2015). Biomass Bioenerg. 72: 200–205. doi: 10.1016/j.biombioe.2014.11.004.
- 12Zheng, Y., Yu, X., Zeng, J., and Chen, S. (2012). Biotechnol. Biofuel. 5: 50. doi: 10.1186/1754-6834-5-50.
- 13Calvey, C.H., Su, Y., Willis, L.B. et al. (2016). Bioresour. Technol. 200: 780–788. doi: 10.1016/j.biortech.2015.10.104.
- 14Chisti, Y. (2007). Biotechnol. Adv. 25: 294–306. doi: 10.1016/j.biotechadv.2007.02.001.
- 15Rao, A.R., Dayananda, C., Sarada, R. et al. (2007). Bioresour. Technol. 98: 560–564. doi: 10.1016/j.biortech.2006.02.007.
- 16Morales, G., Bautista, L.F., Melero, J.A. et al. (2011). Bioresour. Technol. 102: 9571–9578. doi: 10.1016/j.biortech.2011.07.082.
- 17Bueno-Borges, L.B., de Camargo, A.C., Sangaletti-Gerhard, N. et al. (2017). J. Am. Oil Chem. Soc. 94: 1101–1109. doi: 10.1007/s11746-017-3012-0.
- 18Demirbaş, A. (2002). Energy Convers. Manag. 43: 2349–2356. doi: 10.1016/S0196-8904(01)00170-4.
- 19Mittelbach, M. and Gangl, S. (2001). J. Am. Oil Chem. Soc. 78: 573–577. doi: 10.1007/s11746-001-0306-z.
- 20Teixeira, L.S.G., Couto, M.B., Souza, G.S. et al. (2010). Biomass Bioenerg. 34: 438–441. doi: 10.1016/j.biombioe.2009.12.007.
- 21Sierra-Cantor, J. and Guerrero-Fajardo, C. (2017). Renew. Sust. Energ. Rev. 72: 774–790. doi: 10.1016/j.rser.2017.01.077.
- 22Graboski, M.S. and McCormick, R.L. (1998). Prog. Energ. Combust. Sci. 24: 125–164. doi: 10.1016/S0360-1285(97)00034-8.
- 23Öner, C. and Altun, Ş. (2009). Appl. Energ. 86: 2114–2120. doi: 10.1016/j.apenergy.2009.01.005.
- 24Kumar, S., Gupta, N., and Pakshirajan, K. (2015). J. Environ. Chem. Eng. 3: 1630–1636. doi: 10.1016/j.jece.2015.05.030.
- 25Jambulingam, R., Shalma, M., and Shankar, V. (2019). J. Clean. Prod. 215: 245–258. doi: 10.1016/j.jclepro.2018.12.146.
- 26Carvalho, A.K.F., Bento, H.B.S., Rivaldi, J.D., and de Castro, H.F. (2018). Fuel 234: 789–796. doi: 10.1016/j.fuel.2018.07.029.
- 27Tanimura, A., Takashima, M., Sugita, T. et al. (2014). Bioresour. Technol. 153: 230–235. doi: 10.1016/j.biortech.2013.11.086.
- 28Katre, G., Raskar, S., Zinjarde, S. et al. (2018). Energy 142: 944–952. doi: 10.1016/j.energy.2017.10.082.
- 29Ashokkumar, V., Agila, E., Sivakumar, P. et al. (2014). Energ. Convers. Manag. 88: 936–946. doi: 10.1016/j.enconman.2014.09.019.
- 30Li, Q., Xu, J., Du, W. et al. (2013). Renew. Sust. Energ. Rev. 25: 742–748. doi: 10.1016/j.rser.2013.05.043.
- 31Achten, W.M.J., Verchot, L., Franken, Y.J. et al. (2008). Biomass Bioenerg. 32: 1063–1084. doi: 10.1016/j.biombioe.2008.03.003.
- 32Cho, H.J., Kim, J.K., Ahmed, F., and Yeo, Y.K. (2013). Appl. Energ. 111: 479–488. doi: 10.1016/j.apenergy.2013.05.038.
- 33 Farm Service Agency. (2013). https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/Comm-Operations/procurement-and-sales/export/pdfs/bot2.pdf (accessed 21 February 2019).
- 34Cunha, A., Feddern, V., De Prá, M.C. et al. (2013). Fuel 105: 228–234. doi: 10.1016/j.fuel.2012.06.020.
- 35Keskin, A. (2018). Renew. Energ. 122: 216–224. doi: 10.1016/j.renene.2018.01.123.
- 36Suwannapa, P. and Tippayawong, N. (2017). Chem. Eng. Commun. 204: 618–624. doi: 10.1080/00986445.2017.1294585.
- 37El-Mashad, H.M., Zhang, R., and Avena-Bustillos, R.J. (2008). Biosyst. Eng. 99: 220–227. doi: 10.1016/j.biosystemseng.2007.09.029.
- 38Sander, A., Antonije Košćak, M., Kosir, D. et al. (2018). Renew. Energ. 118: 752–760. doi: 10.1016/j.renene.2017.11.068.
- 39Verma, P., Sharma, M.P., and Dwivedi, G. (2016). Energ. Rep. 2: 8–13. doi: 10.1016/j.egyr.2015.12.001.
- 40Ma, F., Clements, L.D., and Hanna, M.A. (1998). Ind. Eng. Chem. Res. 37: 3768–3771. doi: 10.1021/ie980162s.
- 41Guarieiro, L.L.N., Guerreiro, E.T.D.A., Amparo, K.K.D.S. et al. (2014). Microchem. J. 117: 94–99. doi: 10.1016/j.microc.2014.06.004.
- 42 Foreign Agricultural Service USDA. (2019). https://www.fas.usda.gov/data/livestock-and-poultry-world-markets-and-trade (accessed 18 February 2019).
- 43 U. S. Energy Information Administration. (2019). https://www.eia.gov/biofuels/biodiesel/production/archive (accessed 22 February 2019).
- 44 Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. (2018). http://www.anp.gov.br/publicacoes/anuario-estatistico/anuario-estatistico-2018#Se%C3%A7%C3%A3o%204 (accessed 28 February 2019).
- 45Esteves, V.P.P., Esteves, E.M.M., Bungenstab, D.J. et al. (2017). J. Clean. Prod. 151: 578–591. doi: 10.1016/j.jclepro.2017.03.063.
- 46Esteves, E.M.M., Esteves, V.P.P., Bungenstab, D.J. et al. (2018). J. Clean. Prod. 179: 81–92. doi: 10.1016/j.jclepro.2017.12.262.
- 47Gooding, C.H. and Meeker, D.L. (2016). Prof. Anim. Sci. 32: 259–270. doi: 10.15232/pas.2015-01487.
10.15232/pas.2015-01487 Google Scholar
- 48Dufour, J. and Iribarren, D. (2012). Renew. Energ. 38: 155–162. doi: 10.1016/j.renene.2011.07.016.
- 49Sajid, Z., Khan, F., and Zhang, Y. (2016). Renew. Energ. 85: 945–952. doi: 10.1016/j.renene.2015.07.046.
- 50 Agricultural Marketing Service USDA. (2019). https://www.ams.usda.gov/market-news/livestock-poultry-grain (accessed 19 February 2019).
- 51Wang, Y., Pengzhan Liu, S.O., and Zhang, Z. (2007). Energ. Convers. Manag. 48: 184–188. doi: 10.1016/j.enconman.2006.04.016.
- 52Bhuiya, M.M.K., Rasul, M.G., Khan, M.M.K. et al. (2016a). Renew. Sust. Energ. Rev. 55: 1109–1128. doi: 10.1016/j.rser.2015.04.163.
- 53Chongkhong, S., Tongurai, C., Chetpattananondh, P., and Bunyakan, C. (2007). Biomass Bioenerg. 31: 563–568. doi: 10.1016/j.biombioe.2007.03.001.
- 54Fingauz, I.M., Vorob'Eva, A.F., Shirikova, G.A., and Dokuchaeva, M.P. (2003). J. Polym. Sci. 56: 245–249. doi: 10.1002/pol.1962.1205616321.
- 55Yaakob, Z., Mohammad, M., Alherbawi, M. et al. (2013). Renew. Sust. Energ. Rev. 18: 184–193. doi: 10.1016/j.rser.2012.10.016.
- 56Kapor, N.Z.A., Maniam, G.P., Rahim, M.H.A., and Yusoff, M.M. (2017). J. Clean. Prod. 143: 1–9. doi: 10.1016/j.jclepro.2016.12.163.
- 57Uliana, N.R., Polloni, A., Paliga, M. et al. (2017). Renew. Energ. 113: 393–396. doi: 10.1016/j.renene.2017.06.001.
- 58Nielsen, P.M., Rancke-Madsen, A., Holm, H.C., and Burton, R. (2016). J. Am. Oil Chem. Soc. 93: 905–910. doi: 10.1007/s11746-016-2843-4.
- 59Yilmaz, N. (2012). Fuel 94: 440–443. doi: 10.1016/j.fuel.2011.11.015.
- 60Lam, M.K., Lee, K.T., and Mohamed, A.R. (2010). Biotechnol. Adv. 28: 500–518. doi: 10.1016/j.biotechadv.2010.03.002.
- 61Yaakob, Z., Narayanan, B.N., Padikkaparambil, S. et al. (2014). Renew. Sust. Energ. Rev. 35: 136–153. doi: 10.1016/j.rser.2014.03.055.
- 62Bouaid, A., Martinez, M., and Aracil, J. (2007). Fuel 86: 2596–2602. doi: 10.1016/j.fuel.2007.02.014.
- 63Balat, M. (2011). Energ. Convers. Manag. 52: 1479–1492. doi: 10.1016/j.enconman.2010.10.011.
- 64Gui, M.M., Lee, K.T., and Bhatia, S. (2008). Energy 33: 1646–1653. doi: 10.1016/j.energy.2008.06.002.
- 65Bhuiya, M.M.K., Rasul, M.G., Khan, M.M.K. et al. (2016b). Renew. Sust. Energ. Rev. 55: 1129–1146. doi: 10.1016/j.rser.2015.09.086.
- 66Navarro-Pineda, F.S., Baz-Rodríguez, S.A., Handler, R., and Sacramento-Rivero, J.C. (2016). Renew. Sust. Energ. Rev. 54: 247–269. doi: 10.1016/j.rser.2015.10.009.
- 67Regitano-d'Arce, M.A.B., Sangaletti-Gerhard, N., and Bueno-Borges, L.B. (2017). In: Knowledge-Driven Developments in the Bioeconomy. Economic Complexity and Evolution, 1e (ed. S. Dabbert, I. Lewandowski, J. Weiss and A. Pyka), 325–341. Cham: Springer. doi: 10.1007/978-3-319-58374-7_17.
10.1007/978-3-319-58374-7_17 Google Scholar
- 68Reaney, M.J.T., Hertz, P.B., and McCalley, W.W. (2005). In: Bailey's Industrial Oil and Fat Products, 6e (ed. F. Shahidi), 223–258. Hoboken: Wiley-Interscience. doi: 10.1002/047167849X.bio056.
10.1002/047167849X.bio056 Google Scholar
- 69Arce-Saavedra, T. (2018). Conventional and ultrasonic assisted alkaline transesterification of binary mixtures of jatropha (Jatropha curcas) and palm oil (Elaeis guineensis). Ph.D. thesis, University of São Paulo, Piracicaba, SP, BRA.
- 70Basili, M. and Fontini, F. (2012). Ecol. Econ. 78: 1–8. doi: 10.1016/j.ecolecon.2012.03.010.
- 71Baumert, S., Khamzina, A., and Vlek, P.L.G. (2018). Energ. Sust. Dev. 42: 14–23. doi: 10.1016/j.esd.2017.09.007.
- 72Singh, K., Singh, B., Verma, S.K., and Patra, D.D. (2014). Renew. Sust. Energ. Rev. 35: 356–360. doi: 10.1016/j.rser.2014.04.033.
- 73Soto, I., Ellison, C., Kenis, M. et al. (2018). Energ. Sust. Dev. 42: 77–86. doi: 10.1016/j.esd.2017.10.004.
- 74Regitano-d'Arce, M.A.B. and Vieira, T.M.F. (2009). In: Temas Selectos em Aceites y Grasas, 1e (ed. J.M. Block and D. Barrera-Arellano), 1–29. Blucher-AOCS.
- 75Ijaz, M., Bahtti, K.H., Anwar, Z. et al. (2016). J. Radiat. Res. Appl. Sci. 9: 180–184. doi: 10.1016/j.jrras.2015.12.005.
- 76Amouri, M., Mohellebi, F., Zaïd, T.A., and Aziza, M. (2017). Clean Technol. Environ. 19: 749–760. doi: 10.1007/s10098-016-1262-4.
- 77Freitas, S.M. and Fredo, C.E. (2005). Informações Econômicas 35: 37–42.
- 78Cheah, K.Y., Toh, T.S., and Koh, P.M. (2010). Inform 21: 264–266.
- 79Lokman, I.M., Rashid, U., Zainal, Z. et al. (2014). J. Oleo Sci. 63: 849–855. doi: 10.5650/jos.ess14068.
- 80 Zero and Rainforest Foundation Norway. (2016). https://d5i6is0eze552.cloudfront.net/documents/Annet/Palm-Fatty-Acid-Distillate-in-biofuels.-ZERO-and-Rainforest-Foundation-N.pdf?mtime=20160302113207 (accessed 2 March 2019).
- 81Ma, Y., Gao, Z., Wang, Q., and Liu, Y. (2018). Bioresour. Technol. 263: 631–641. doi: 10.1016/j.biortech.2018.05.028.
- 82Subramaniam, R., Dufreche, S., Zappi, M., and Bajpai, R. (2010). J. Ind. Microbiol. Biotechnol. 37: 1271–1287. doi: 10.1007/s10295-010-0884-5.
- 83Santala, S., Efimova, E., Kivinen, V. et al. (2011). Microb. Cell Factories 10: 36. doi: 10.1186/1475-2859-10-36.
- 84Karatay, S.E. and Dönmez, G. (2011). Appl. Energ. 88: 3632–3635. doi: 10.1016/j.apenergy.2011.04.010.
- 85Zhang, Q., Li, Y., and Xia, L. (2014). Biotechnol. Biofuel. 7: 152. doi: 10.1186/s13068-014-0152-4.
- 86Gouda, M.K., Omar, S.H., and Aouad, L.M. (2008). World J. Microbiol. Biotechnol. 24: 1703–1711. doi: 10.1007/s11274-008-9664-z.
- 87El Bialy, H., Gomaa, O.M., and Azab, K.S. (2011). World J. Microbiol. Biotechnol. 27: 2791–2798. doi: 10.1007/s11274-011-0755-x.
- 88Karatay, S.E. and Dönmez, G. (2010). Bioresour. Technol. 101: 7988–7990. doi: 10.1016/j.biortech.2010.05.054.
- 89Xu, J., Zhao, X., Wang, W. et al. (2012). Biochem. Eng. J. 65: 30–36. doi: 10.1016/j.bej.2012.04.003.
- 90Hsieh, C.H. and Wu, W.T. (2009). Bioresour. Technol. 100: 3921–3926. doi: 10.1016/j.biortech.2009.03.019.
- 91Church, J., Hwang, J.-H., Kim, K.-T. et al. (2017). Bioresour. Technol. 243: 147–153. doi: 10.1016/j.biortech.2017.06.081.
- 92Xiong, W., Li, X., Xiang, J., and Wu, Q. (2008). Appl. Microbiol. Biotechnol. 78: 29–36. doi: 10.1007/s00253-007-1285-1.
- 93Tang, H., Abunasser, N., Garcia, M.E.D. et al. (2011). Appl. Energ. 88: 3324–3330. doi: 10.1016/j.apenergy.2010.09.013.
- 94Ho, S., Chen, C.N., Lai, Y. et al. (2014). Bioresour. Technol. 163: 128–135. doi: 10.1016/j.biortech.2014.04.028.
- 95Meng, X., Yang, J., Xu, X. et al. (2009). Renew. Energ. 34: 1–5. doi: 10.1016/j.renene.2008.04.014.
- 96Christophe, G., Kumar, V., Nouaille, R. et al. (2012). Braz. Arch. Biol. Technol. 55: 29–46. doi: 10.1590/S1516-89132012000100004.
- 97Lam, M.K. and Lee, K.T. (2012). Biotechnol. Adv. 30: 673–690. doi: 10.1016/j.biotechadv.2011.11.008.
- 98Maity, J.P., Bundschuh, J., Chen, C., and Bhattacharya, P. (2014). Energy 78: 104–113. doi: 10.1016/j.energy.2014.04.003.
- 99Alvarez, H.M. and Steinbüchel, A. (2002). Appl. Microbiol. Biotechnol. 60: 367–376. doi: 10.1007/s00253-002-1135-0.
- 100Khan, M.I., Shin, J.H., and Kim, J.D. (2018). Microb. Cell Factories 1–21. doi: 10.1186/s12934-018-0879-x.
- 101Faried, M., Samer, M., Abdelsalam, E. et al. (2017). Renew. Sust. Energ. Rev. 79: 893–913. doi: 10.1016/j.rser.2017.05.199.
- 102Murata, N., Takahashi, S., Nishiyama, Y., and Allakhverdiev, S.I. (2007). Biochim. Biophys. Acta Bioenerg. 1767: 414–421. doi: 10.1016/j.bbabio.2006.11.019.
- 103Zhu, L. (2015). Biofuels Bioprod. Biorefin. 9: 801–814. doi: 10.1002/bbb.1576.
- 104Parichehreh, R., Gheshlaghi, R., Mahdavi, M.A., and Elkamel, A. (2019). Biochem. Eng. J. 141: 131–145. doi: 10.1016/j.bej.2018.10.011.
- 105Singh, S.P. and Singh, P. (2015). Renew. Sust. Energ. Rev. 50: 431–444. doi: 10.1016/j.rser.2015.05.024.
- 106Kong, Q., Yu, F., Chen, P., and Ruan, R. (2007). ASABE Annu. Int. Meet., 077034, 1–7.
- 107Onay, M., Sonmez, C., Oktem, H.A., and Yucel, A.M. (2014). Bioresour. Technol. 169: 62–71. doi: 10.1016/j.biortech.2014.06.078.
- 108Huang, Q., Jiang, F., Wang, L., and Yang, C. (2017). Engineering 3: 318–329. doi: 10.1016/J.ENG.2017.03.020.
- 109Tercero, E.A.R., Domenicali, G., and Bertucco, A. (2014). Energy 76: 807–815. doi: 10.1016/j.energy.2014.08.077.
- 110Cho, H.U. and Park, J.M. (2018). Bioresour. Technol. 256: 502–508. doi: 10.1016/j.biortech.2018.02.010.
- 111Kalscheuer, R., Stölting, T., and Steinbüchel, A. (2006). Microbiology 152: 2529–2536. doi: 10.1099/mic.0.29028-0.
- 112Duan, Y., Zhu, Z., Cai, K. et al. (2011). PLoS One 6 (1–7): doi: 10.1371/journal.pone.0020265.
- 113Patel, A., Arora, N., Pruthi, V., and Pruthi, P.A. (2019). Ultrason. Sonochem. 51: 504–516. doi: 10.1016/j.ultsonch.2018.05.002.
- 114Jin, M., Slininger, P.J., Dien, B.S. et al. (2015). Trends Biotechnol. 33: 43–54. doi: 10.1016/j.tibtech.2014.11.005.
- 115Howlader, S., Rai, N., and Todd, W. (2018). Bioresour. Technol. 267: 743–755. doi: 10.1016/j.biortech.2018.07.092.
- 116Dong, T., Wang, J., Miao, C. et al. (2013). Bioresour. Technol. 136: 8–15. doi: 10.1016/j.biortech.2013.02.105.
- 117Tan, X.B., Lam, M.K., Uemura, Y. et al. (2018). Chin. J. Chem. Eng. 26: 17–30. doi: 10.1016/j.cjche.2017.08.010.
- 118Sun, J., Xiong, X., Wang, M. et al. (2019). Renew. Sust. Energ. Rev. 104: 296–306. doi: 10.1016/j.rser.2019.01.021.
- 119Li, Q., Du, W., and Liu, D. (2008). Appl. Microbiol. Biotechnol. 80: 749–756. doi: 10.1007/s00253-008-1625-9.
- 120Siddiquee, M.N. and Rohani, S. (2011). Fuel Process. Technol. 92: 2241–2251. doi: 10.1016/j.fuproc.2011.07.018.
- 121Pastore, C., Lopez, A., Lotito, V., and Mascolo, G. (2013). Chemosphere 92: 667–673. doi: 10.1016/j.chemosphere.2013.03.046.
- 122Tyagi, K. and Lo, S.L. (2013). Renew. Sust. Energ. Rev. 25: 708–728. doi: 10.1016/j.rser.2013.05.029.
- 123Sangaletti-Gerhard, N., Cea, M., Risco, V., and Navia, R. (2015). Bioresour. Technol. 179: 63–70. doi: 10.1016/j.biortech.2014.12.003.
- 124Olkiewicz, M., Fortuny, A., Stüber, F. et al. (2012). Procedia Eng. 42: 634–643. doi: 10.1016/j.proeng.2012.07.456.
10.1016/j.proeng.2012.07.456 Google Scholar
- 125Willson, R.M., Wiesman, Z., and Brenner, A. (2010). Waste Manag. 30: 1881–1888. doi: 10.1016/j.wasman.2010.03.008.
- 126Olkiewicz, M., Fortuny, A., Stüber, F. et al. (2015). Fuel 141: 250–257. doi: 10.1016/j.fuel.2014.10.066.
- 127Choi, O.K., Song, J.S., Cha, D.K., and Lee, J.W. (2014). Bioresour. Technol. 166: 51–56. doi: 10.1016/j.biortech.2014.05.001.
- 128Mondala, A., Liang, K., Toghiani, H. et al. (2009). Bioresour. Technol. 100: 1203–1210. doi: 10.1016/j.biortech.2008.08.020.
- 129Revellame, E., Hernandez, R., French, W. et al. (2011). J. Chem. Technol. Biotechnol. 86: 61–68. doi: 10.1002/jctb.2491.
- 130Watanabe, Y., Pinsirodom, P., Nagao, T. et al. (2007). J. Mol. Catal. B Enzym. 44: 99–105. doi: 10.1016/j.molcatb.2006.09.007.
- 131Yan, J., Li, A., Xu, Y. et al. (2012). Bioresour. Technol. 123: 332–337. doi: 10.1016/j.biortech.2012.07.103.
- 132Chen, J., Tyagi, R.D., Li, J. et al. (2018). Bioresour. Technol. 253: 41–48. doi: 10.1016/j.biortech.2018.01.016.