Transgenic Oils
Abstract
Genetic engineering (GE) technology offers a powerful tool for developing a broad range of oils with specialized compositions useful for different food and industrial applications. Such oils could contain modified ratios of endogenous fatty acids, or even unusual fatty acids and lipids, produced through the transgenic expression of biosynthetic genes from other species. However, GE technology has mostly been limited to crop input traits such as herbicide tolerance and insect resistance. As this article will discuss, only recently have high oleic acid soybeans with transgenically modified oil compositions been grown on a commercial basis. For the most part, the synthesis of unusual fatty acids with useful functional groups only results in the accumulation of low levels of the desired product in the transgenic seed. The continually improving knowledge of fatty acid biosynthesis and triacylglycerol assembly in oilseeds will be explored. This knowledge, combined with new systems and synthetic biology approaches, promises to overcome biological bottlenecks limiting the production of unusual fatty acids in transgenic oilseeds. This article will also describe the regulatory and economic barriers that likely present significant barriers to the widespread adoption of novel oils with altered output traits. As discussed, new business models for the commercial production of specialized industrial oils will therefore need to be considered.
References
- 1Harvey, B.L. and Downey, R.K. (1964). Can. J. Plant Sci. 44: 104–111.
- 2Stefansson, B.R. and Hougen, F.W. (1964). Can. J. Plant Sci. 44: 359–364.
- 3Kondra, Z.P. and Stefansson, B.R. (1970). Can. J. Plant Sci. 50: 643–647.
- 4Salie, M.J. and Thelen, J.J. (2016). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861: 1207–1213.
- 5Voelker, T.A., Worrell, A.C., Anderson, L. et al. (1992). Science 257: 72–74.
- 6Dehesh, K., Edwards, P., Hayes, T. et al. (1996). Plant Physiol. 110: 203–210.
- 7Bates, P.D., Durrett, T.P., Ohlrogge, J.B., and Pollard, M. (2009). Plant Physiol. 150: 55–72.
- 8Bates, P.D., Ohlrogge, J.B., and Pollard, M. (2007). J. Biol. Chem. 282: 31206–31216.
- 9Bates, P.D., Fatihi, A., Snapp, A.R. et al. (2012). Plant Physiol. 160: 1530–1539.
- 10Lager, I., Yilmaz, J.L., Zhou, X.-R. et al. (2013). J. Biol. Chem. 288: 36902–36914.
- 11Wang, L., Shen, W., Kazachkov, M. et al. (2012). Plant Cell 24: 4652–4669.
- 12Kennedy, E.P. (1961). Fed. Proc. 20: 934–940.
- 13Bates, P.D. and Browse, J. (2011). Plant J. 68: 387–399.
- 14Lu, C., Xin, Z., Ren, Z. et al. (2009). Proc. Natl. Acad. Sci. U. S. A 106: 18837–18842.
- 15Slack, C.R., Campbell, L.C., Browse, J.A., and Roughan, P.G. (1983). Biochim. Biophys. Acta 754: 10–20.
- 16Liu, Q., Siloto, R.M.P., Lehner, R. et al. (2012). Prog. Lipid Res. 51: 350–377.
- 17Dahlqvist, A., Stahl, U., Lenman, M. et al. (2000). Proc. Natl. Acad. Sci. U. S. A 97: 6487–6492.
- 18Broun, P., Shanklin, J., Whittle, E., and Somerville, C. (1998). Science 282: 1315–1317.
- 19van de Loo, F.J., Broun, P., Turner, S., and Somerville, C. (1995). Proc. Natl. Acad. Sci. U. S. A 92: 6743–6747.
- 20Hatanaka, T., Shimizu, R., and Hildebrand, D. (2004). Phytochemistry 65: 2189–2196.
- 21Lee, M., Lenman, M., Banaś, A. et al. (1998). Science 280: 915–918.
- 22Burgal, J., Shockey, J., Lu, C. et al. (2008). Plant Biotechnol. J. 6: 819–831.
- 23Padgette, S.R., Taylor, N.B., Nida, D.L. et al. (1996). J. Nutr. 126: 702–716.
- 24Nida, D.L., Patzer, S., Harvey, P. et al. (1996). J. Agric. Food Chem. 44: 1967–1974.
- 25Sidhu, R.S., Hammond, B.G., Fuchs, R.L. et al. (2000). J. Agric. Food Chem. 48: 2305–2312.
- 26Waltz, E. (2010). Nat. Biotech. 28: 769.
- 27Pham, A.-T., Lee, J.-D., Shannon, J.G., and Bilyeu, K.D. (2010). BMC Plant Biol. 10: 195.
- 28Demorest, Z.L., Coffman, A., Baltes, N.J. et al. (2016). BMC Plant Biol. 16: 225.
- 29Ascherio, A. and Willett, W.C. (1997). Am. J. Clin. Nutr. 66: 1006S–1010S.
- 30List, G.R. and Wilson, R.F. (2012). In: Designing Soybeans for 21st Century Markets (ed. R.F. Wilson). Urbana, IL: AOCS Press.
10.1016/B978-0-9830791-0-1.50006-6 Google Scholar
- 31Sandhu, D., Alt, J.L., Scherder, C.W. et al. (2007). J. Am. Oil Chem. Soc. 84: 229–235.
- 32Takagi, Y. and Rahman, S.M. (1996). Theor. Appl. Genet. 92: 179–182.
- 33Scherder, C.W. and Fehr, W.R. (2008). Crop Sci. 48: 1755–1758.
- 34Clemente, T.E. and Cahoon, E.B. (2009). Plant Physiol. 151: 1030–1040.
- 35Hoshino, T., Kawashita, N., Takagi, Y., and Anai, T. (2011). Plant Breed. 130: 544–550.
- 36Anai, T., Yamada, T., Hideshima, R. et al. (2008). Breed. Sci. 58: 447–452.
- 37Dierking, E.C. and Bilyeu, K.D. (2009). BMC Plant Biol. 9: 89.
- 38Takagi, Y. and Arima, S. (2011). Jpn. J. Crop. Sci. 80: 73–76.
- 39Hoshino, T., Takagi, Y., and Anai, T. (2010). Breed. Sci. 60: 419–425.
- 40Buhr, T., Sato, S., Ebrahim, F. et al. (2002). Plant J. 30: 155–163.
- 41Graef, G., LaVallee, B.J., Tenopir, P. et al. (2009). Plant Biotechnol. J. 7: 411–421.
- 42Kinney, A.J., Stecca, K.L., Meyer, K. et al. (2007). Soybean event DP-305423-1 and compositions and methods for the identification and/or detection thereof. US Patent US 8,609,935 B2.
- 43 USDA-APHIS (2011). Monsanto Improved Fatty Acid Profile MON 87705 Soybean, Petition 09-201-01p.
- 44Durrett, T.P., Benning, C., and Ohlrogge, J. (2008). Plant J. 54: 593–607.
- 45Reeves, C.J., Menezes, P.L., Jen, T.-C., and Lovell, M.R. (2015). Tribol. Int. 90: 123–134.
- 46Tat, M.E., Wang, P.S., Van Gerpen, J.H., and Clemente, T.E. (2007). J. Am. Oil Chem. Soc. 84: 865–869.
- 47Fraeye, I., Bruneel, C., Lemahieu, C. et al. (2012). Food Res. Int. 48: 961–969.
- 48Napier, J.A., Usher, S., Haslam, R.P. et al. (2015). Eur. J. Lipid Sci. Technol. 117: 1317–1324.
- 49Park, H., Weier, S., Razvi, F. et al. (2017). Plant Biotechnol. J. 15: 227–236.
- 50Sato, S., Xing, A., Ye, X. et al. (2004). Crop Sci. 44: 646–652.
- 51Liu, J.-W., DeMichele, S., Bergana, M. et al. (2001). J. Am. Oil Chem. Soc. 78: 489–493.
- 52Nykiforuk, C.L., Shewmaker, C., Harry, I. et al. (2012). Transgenic Res. 21: 367–381.
- 53Flider, F.J. (2013). Lipid Technol. 25: 227–229.
- 54James, M.J., Ursin, V.M., and Cleland, L.G. (2003). Am. J. Clin. Nutr. 77: 1140–1145.
- 55Eckert, H., LaVallee, B., Schweiger, B.J. et al. (2006). Planta 224: 1050–1057.
- 56Ursin, V.M. (2003). J. Nutr. 133: 4271–4274.
- 57 USDA-APHIS (2012). Monsanto Petition (09-SY-2000U) for Determination of Non-regulated Status of (MON 87769) Stearidonic Acid Soybean.
- 58Nanton, D.A., Ruohonen, K., Robb, D.H.F. et al. (2012). Aquac. Nutr. 18: 640–650.
- 59Domergue, F., Abbadi, A., Zähringer, U. et al. (2005). Biochem. J. 389: 483–490.
- 60Ruiz-Lopez, N., Haslam, R.P., Usher, S.L. et al. (2013). Metab. Eng. 17: 30–41.
- 61Ruiz-López, N., Haslam, R.P., Venegas-Calerón, M. et al. (2012). Transgenic Res. 21: 1233–1243.
- 62Petrie, J.R., Shrestha, P., Belide, S. et al. (2014). PLoS One 9: e85061.
- 63Ruiz-Lopez, N., Haslam, R.P., Napier, J.A., and Sayanova, O. (2014). Plant J. 77: 198–208.
- 64Betancor, M.B., Sprague, M., Montero, D. et al. (2016). Lipids 51: 1171–1191.
- 65Betancor, M.B., Sprague, M., Usher, S. et al. (2015). Sci. Rep. 5: 8104.
- 66Walsh, T.A., Bevan, S.A., Gachotte, D.J. et al. (2016). Nat. Biotechnol. 34: 881–887.
- 67Badami, R.C. and Patil, K.B. (1980). Prog. Lipid Res. 19: 119–153.
- 68Knutzon, D.S., Hayes, T.R., Wyrick, A. et al. (1999). Plant Physiol. 120: 739–746.
- 69van Erp, H., Shockey, J., Zhang, M. et al. (2015). Plant Physiol. 168: 36–46.
- 70Li, X., van Loo, E.N., Gruber, J. et al. (2012). Plant Biotechnol. J. 10: 862–870.
- 71Iskandarov, U., Silva, J.E., Kim, H.J. et al. (2017). Plant Physiol. 174: 97–109.
- 72Nguyen, H.T., Mishra, G., Whittle, E. et al. (2010). Plant Physiol. 154: 1897–1904.
- 73Snapp, A.R., Kang, J., Qi, X., and Lu, C. (2014). Planta 240: 599–610.
- 74Li, R., Yu, K., Hatanaka, T., and Hildebrand, D.F. (2010). Plant Biotechnol. J. 8: 184–195.
- 75Lardizabal, K.D., Metz, J.G., Sakamoto, T. et al. (2000). Plant Physiol. 122: 645–656.
- 76Iven, T., Hornung, E., Heilmann, M., and Feussner, I. (2016). Plant Biotechnol. J. 14: 252–259.
- 77Bagby, M.O. and Smith, C.R. Jr. (1967). Biochim. Biophys. Acta 137: 475–477.
- 78Kleiman, R., Miller, R.W., Earle, F.R., and Wolff, I.A. (1967). Lipids 2: 473–478.
- 79Durrett, T.P., McClosky, D.D., Tumaney, A.W. et al. (2010). Proc. Natl. Acad. Sci. U. S. A 107: 9464–9469.
- 80Liu, J., Rice, A., McGlew, K. et al. (2015). Plant Biotechnol. J. 13: 858–865.
- 81Liu, J., Tjellström, H., McGlew, K. et al. (2015). Ind. Crop. Prod. 65: 259–268.
- 82Severino, L.S., Auld, D.L., Baldanzi, M. et al. (2012). Agron. J. 104: 853–880.
- 83Voelker, T.A., Hayes, T.R., Cranmer, A.M. et al. (1996). Plant J. 9: 229–241.
- 84 USDA-APHIS (1994). Fed. Regist. 59: 55250–55251.
- 85Nguyen, H.T., Park, H., Koster, K.L. et al. (2015). Plant Biotechnol. J. 13: 38–50.
- 86Smith, M.A., Moon, H., Chowrira, G., and Kunst, L. (2003). Planta 217: 507–516.
- 87Lu, C., Fulda, M., Wallis, J.G., and Browse, J. (2006). Plant J. 45: 847–856.
- 88Broun, P. and Somerville, C. (1997). Plant Physiol. 113: 933–942.
- 89Bates, P.D., Johnson, S.R., Cao, X. et al. (2014). Proc. Natl. Acad. Sci. U. S. A 111: 1204–1209.
- 90Li, R., Yu, K., Wu, Y. et al. (2012). Metab. Eng. 14: 29–38.
- 91Cahoon, E.B., Dietrich, C.R., Meyer, K. et al. (2006). Phytochemistry 67: 1166–1176.
- 92Hu, Z., Ren, Z., and Lu, C. (2012). Plant Physiol. 158: 1944–1954.
- 93van Erp, H., Bates, P.D., Burgal, J. et al. (2011). Plant Physiol. 155: 683–693.
- 94Hughes, R.A. and Ellington, A.D. (2017). Cold Spring Harb. Perspect. Biol. 9: a023812.
- 95Bansal, S. and Durrett, T.P. (2016). Biochimie 120: 9–16.
- 96Iskandarov, U., Kim, H.J., and Cahoon, E.B. (2014). In: Plants and BioEnergy (ed. M.C. McCann, M.S. Buckeridge and N.C. Carpita), 131–140. New York, NY: Springer.
10.1007/978-1-4614-9329-7_8 Google Scholar
- 97Lu, C. and Kang, J. (2008). Plant Cell Rep. 27: 273–278.
- 98Dobre, P. and Jurcoane, S. (2011). Scientific Papers-Series A. Agronomy 54: 420–424.
- 99Gesch, R.W. and Archer, D.W. (2013). Ind Crop Prod, vol. 44, 718–725.
- 100Gesch, R.W., Archer, D.W., and Berti, M.T. (2014). Agron. J. 106: 1735–1745.
- 101Wang, Z., Gerstein, M., and Snyder, M. (2009). Nat. Rev. Genet. 10: 57–63.
- 102Tran, T.N.T., Shelton, J., Brown, S., and Durrett, T.P. (2017). Plant J. 92: 82–94.
- 103Horn, P.J., Liu, J., Cocuron, J.C. et al. (2016). Plant J. 86: 322–348.
- 104Brown, A.P., Kroon, J.T., Swarbreck, D. et al. (2012). PLoS One 7: e30100.
- 105Kim, H.U. and Chen, G.Q. (2015). BMC Genomics 16: 230.
- 106Kim, H.J., Silva, J.E., Iskandarov, U. et al. (2015). Plant J. 84: 1021–1033.
- 107Kim, H.J., Silva, J.E., Vu, H.S. et al. (2015). J. Exp. Bot. 66: 4251–4265.
- 108Sprink, T., Metje, J., and Hartung, F. (2015). Curr. Opin. Biotechnol. 32: 47–53.
- 109Haun, W., Coffman, A., Clasen, B.M. et al. (2014). Plant Biotechnol. J. 12: 934–940.
- 110Doudna, J.A. and Charpentier, E. (2014). Science 346: 1258096.
- 111Belhaj, K., Chaparro-Garcia, A., Kamoun, S. et al. (2015). Curr. Opin. Biotechnol. 32: 76–84.
- 112Jiang, W.Z., Henry, I.M., Lynagh, P.G. et al. (2017). Plant Biotechnol. J. 15: 648–657.
- 113Morineau, C., Bellec, Y., Tellier, F. et al. (2017). Plant Biotechnol. J. 15: 729–739.
- 114Aznar Moreno, J.A. and Durrett, T.P. (2017). Plant Cell Physiol. 58: 1260–1267.
- 115McHughen, A. and Smyth, S. (2008). Plant Biotechnol. J. 6: 2–12.
- 116Wolt, J.D., Wang, K., and Yang, B. (2016). Plant Biotechnol. J. 14: 510–518.
- 117Hartung, F. and Schiemann, J. (2014). Plant J. 78: 742–752.
- 118Smyth, S.J., McDonald, J., and Falck-Zepeda, J. (2014). GM Crop Food 5: 44–57.
- 119Ladics, G.S., Bartholomaeus, A., Bregitzer, P. et al. (2015). Transgenic Res. 24: 587–603.
- 120Weber, N., Halpin, C., Hannah, L.C. et al. (2012). Plant Physiol. 160: 1842–1853.
- 121König, A., Cockburn, A., Crevel, R.W.R. et al. (2004). Food Chem. Toxicol. 42: 1047–1088.
- 122McKeon, T.A. (2003). Trends Food Sci. Technol. 14: 229–241.
- 123Kuiper, H.A., Kleter, G.A., Noteborn, H.P.J.M., and Kok, E.J. (2001). Plant J. 27: 503–528.
- 124Eede, G.v.d., Aarts, H., Buhk, H.J. et al. (2004). Food Chem. Toxicol. 42: 1127–1156.
- 125Waltz, E. (2012). Nat. Biotech. 30: 215.