Structure and Evolution of the 23S rRNA Binding Domain of Protein L2
Isao Tanaka
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorAtsushi Nakagawa
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorTakashi Nakashima
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorMasae Taniguchi
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorHarumi Hosaka
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorMakoto Kimura
Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8512 Japan
Search for more papers by this authorIsao Tanaka
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorAtsushi Nakagawa
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorTakashi Nakashima
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorMasae Taniguchi
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorHarumi Hosaka
Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan
Search for more papers by this authorMakoto Kimura
Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8512 Japan
Search for more papers by this authorRoger A. Garrett
Search for more papers by this authorSummary
This chapter focuses on the crystal structure of the RNA binding domain of BstL2, and discusses its structure from functional and evolutionary points of view. Site-directed mutagenesis of Arg86 or Arg155 significantly diminished RNA binding affinity, and in addition, Arg68 and Lys70 mutations caused partial loss of RNA binding. To date, the three-dimensional structures of over a dozen ribosomal proteins have been determined. Comparison of their structures with those of other known proteins in the Protein Data Bank revealed that many ribosomal proteins share structural motifs, such as RNP, dsRNA binding domain, KH domain, and helix-turn-helix motifs, with RNA or DNA binding proteins. Recent studies of Thermus aquaticus ribosomes, however, demonstrated that peptidyltransferase activity is never attributed solely to the 23S rRNA, and they reduce the number of possible essential macromolecular components of the peptidyltransferase center to 23S rRNA and ribosomal proteins L2 and L3.
References
- Abola, E. E., J. L. Sussman, J. Prilusky, and N. O. Manning. 1997. Protein data bank archives of three-dimensional macromolecular structures. Methods Enzymol. 276: 556–571.
- Beauclerk, A. A., and E. Cundliffe. 1988. The binding site for ribosomal protein L2 within 23S ribosomal RNA for Escherichia coli EMBO J. 7: 3589–3594.
- Bycroft, M., T. J. P. Hubbard, M. Proctor, S. M. Freund, and A. G. Murzin. 1997. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88: 235–242.
- Capel, M. S., D. M. Engelman, B. R. Freeborn, M. Kjeldgaard, J. A. Langer, V. Ramakrishnan, D. G. Schindler, D. K. Schneider, B. P. Schoenborn, and I. Y. Sillers. 1987. A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli . Science 238: 1403–1406.
- Cooperman, B. S., T. Wooten, D. P. Romero, and R. R. Traut. 1995. Histidine 229 in protein L2 is apparently essential for 50S peptidyl transferase activity. Biochem. Cell Biol. 73: 1087–1094.
- Draper, D. E., and L. P. Reynaldo. 1999. RNA binding strategies of ribosomal proteins. Nucleic Acids Res. 27: 381–388.
- Egebjerg, J., J. Christiansen, and R. A. Garrett. 1991. Attachment sites of primary binding proteins L1, L2 and L23 on 23S ribosomal RNA of Escherichia coli . J. Mol. Biol. 222: 251–264.
- Golden, B. L., D. W. Hoffman, V. Ramakrishnan, and S. W. White. 1993. Ribosomal protein S17: characterization of the three-dimensional structure by 1H and 15N NMR. Biochemistry 32: 12812–12820.
- Harada, N., K. Maemura, N. Yamasaki, and M. Kimura. 1998. Identification by site-directed mutagenesis of amino acid residues in ribosomal protein L2 that are essential for binding to 23S ribosomal RNA. Biochim. Biophys. Acta 1429: 176–186.
- Holm, L., and C. Sander. 1993. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233: 123–138.
- Hosaka, H., A. Nakagawa, I. Tanaka, N. Harada, K. Sano, M. Kimura, M. Yao, and S. Wakatsuki. 1998. Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure 5: 1199–1208.
- Khaitovich, P., A. S. Mankin, R. Green, L. Lancaster, and H. Noller. 1999. Characterization of functionally active subribosomal particles from Thermus aquaticus Proc. Natl. Acad. Sci. USA 96: 85–90.
- Kim, K. K., L.-W. Hung, H. Yokota, R. Kim, and S. H. Kim. 1998. Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 Å resolution. Proc. Natl. Acad. Sci. USA 95: 10419–10424.
- Kimura, M., M. Noda, M. Nakashima, and I. Tanaka. Unpublished data.
- Lodi, P. J., J. A. Ernst, J. Kuszewski, A. B. Hickman, A. Engelman, R. Craigie, G. M. Clore, and A. M. Gronenborn. 1995. Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34: 9826–9833.
- Murzin, A. G. 1993. OB (oligonucleotide / oligosaccharide binding)- fold: common structural and functional solution for nonhomologous sequences. EMBO J. 12: 861–867.
- Murzin, A. G., S. E. Brenner, T. Hubbard, and C. Chothia. 1995. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247: 536–540.
- Nakagawa, A., T. Nakashima, M. Taniguchi, H. Hosaka, M. Kimura, and I. Tanaka. 1999. The three-dimensional structure of the RNA-binding domain of ribosomal protein L2: a protein at the peptidyl transferase center of the ribosome. EMBO J. 18: 1459–1467.
- Nakashima, T., M. Kimura, A. Nakagawa, and I. Tanaka. 1998. Crystallization and preliminary X-ray crystallographic study of a 23S rRNA binding domain of the ribosomal protein L2 from Bacillus stearothermophilus J. Struct. Biol. 124: 99–101.
- Nakashima, T., I. Tanaka, and M. Kimura. Unpublished data.
- Narayana, N., D. A. Matthews, E. E. Howell, and X. Nguyenhuu. 1995. A plasmid-encoded dihydrofolate reductase from trimethoprim- resistant bacteria has a novel D2-symmetric active site. Nat. Struct. Biol. 2: 1018–1025.
- Noller, H. F., V. Hoffarth, and L. Zimniak. 1992. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256: 1416–1419.
- Peat, T. S., J. Newman, G. S. Waldo, J. Berendzen, and T. C. Terwilliger. 1998. Structure of translation initiation factor 5A from Pyrobaculum aerophilum at 1.75Å resolution. Structure 6: 1207–1214.
- Ramakrishnan, V., and W. S. White. 1998. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem. Sci. 23: 208–212.
- Schulze, H., and K. H. Nierhaus. 1982. Minimal set of ribosomal components for reconstitution of the peptidyl transferase activity. EMBO J. 1: 609–613.
- Subramanian, A. R. 1983. Structure and functions of ribosomal protein S1. Prog. Nucleic Acid Res. Mol. Biol. 28: 101–142.
- Tanaka, I., A. Nakagawa, H. Hosaka, S. Wakatsuki, F. Mueller, and R. Brimacombe. 1998. Matching the crystallographic structure of ribosomal protein S7 to a three-dimensional model of the 16S ribosomal RNA. RNA 4: 542–550.
- Watanabe, K. Unpublished results.
- Watanabe, K., and M. Kimura. 1985. Location of the binding region for 23S ribosomal RNA on ribosomal protein L2 from Bacillus stearothermophilus . Eur. J. Biochem. 153: 299–304.
- Wilson, K. P., L. M. Shewchuk, R. G. Brennan, A. J. Otsuka, and B. W. Matthews. 1992. Escherichia coli biotin holoenzyme synthetase / bio repressor crystal structure delineates the biotinand DNA-binding domains. Proc. Natl. Acad. Sci. USA 89: 9257–9261.
- Wimberly, B. T., S. W. White, and V. Ramakrishnan. 1998. The structure of ribosomal protein S7 at 1.9 Å resolution reveals a ?-hairpin motif that binds double-stranded nucleic acids. Structure 5: 1187–1198.
- Wimberly, B. T., R. Guymon, J. P. McCutcheon, S. W. White, and V. Ramakrishnan. 1999. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97: 491–502.
- Wittmann-Liebold, B., A. K. E. Kopke, E. Arndt, W. Kromer, T. Hatakeyama, and H.G. Wittmann. 1990. Sequence comparison and evolution of ribosomal proteins and their genes , p. 598–616. In W. E. Hill , A. Dahlberg , R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
- Wu, X., B. Knudsen, S. M. Feller, J. Zheng, A. Sali, D. Cowburn, H. Hanafusa, and J. Kuriyan. 1995. Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Structure 3: 215–226.