Ribosomal Proteins and Their Structural Transitions on and off the Ribosome
Salam Al-Karadaghi
Molecular Biophysics, Center of Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
Search for more papers by this authorNatalia Davydova
Molecular Biophysics, Center of Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
Search for more papers by this authorIrina Eliseikina
Molecular Biophysics, Center of Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
Search for more papers by this authorMaria Garber
Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
Search for more papers by this authorAnders Liljas
Molecular Biophysics, Center of Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
Search for more papers by this authorNatalia Nevskaya
Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
Search for more papers by this authorStanislav Nikonov
Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
Search for more papers by this authorSvetlana Tishchenko
Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
Search for more papers by this authorSalam Al-Karadaghi
Molecular Biophysics, Center of Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
Search for more papers by this authorNatalia Davydova
Molecular Biophysics, Center of Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
Search for more papers by this authorIrina Eliseikina
Molecular Biophysics, Center of Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
Search for more papers by this authorMaria Garber
Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
Search for more papers by this authorAnders Liljas
Molecular Biophysics, Center of Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
Search for more papers by this authorNatalia Nevskaya
Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
Search for more papers by this authorStanislav Nikonov
Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
Search for more papers by this authorSvetlana Tishchenko
Institute of Protein Research, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
Search for more papers by this authorRoger A. Garrett
Search for more papers by this authorSummary
This chapter briefly reviews the structural data available, identifies similarities and differences, and illustrates some difficulties in using the structures of isolated components for insertion into the structures of whole ribosomes or subunits determined at lower resolution. An awareness of the possible differences in structure is necessary for an appreciation of the usefulness of structural studies of isolated components from a larger system such as the ribosome. The fraction of ribosomal proteins that has been structurally characterized is now more than one-third of all ribosomal proteins from bacteria. The chapter focuses on the domain arrangement of ribosomal proteins, and structural motifs. The extended conformations of some ribosomal proteins can be compared to proteins like calmodulin, which has a very elongated structure in one state while the α-helix that separates the two domains becomes bent in another state, with the effect that the protein adopts a more globular structure. L1 is a two-domain protein. The structure of L1 from Thermus thermophilus shows the two domains in close contact. Domain II can be described as an insert in domain I. Thus, there are two connections between the domains. The structural investigations have clearly established that the ribosomal proteins are formed by stable domains with significant hydrophobic cores that would hardly alter their structures upon binding to the ribosome. Several ribosomal proteins are built of two or more domains, sometimes with significant flexibility between them. Long, more or less flexible loops also frequently occur in ribosomal proteins.
References
- Ævarsson, A., E. Brazhnikov, M. Garber, J. Zheltonosova, Y. Chirgadze, S. Al-Karadaghi, L. A. Svensson, and A. Liljas. 1994. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus EMBO J. 13: 3669–3677.
- Babu, A., J. S. Sack, T. G. Greenhough, C. E. Bugg, A. R. Means, and W. J. Cook. 1985. Three-dimensional structure of calmodulin. Nature 315: 37–40.
- Ban, N., B. Freeborn, P. Nissen, P. Penczek, R. A. Grassucci, R. Sweet, J. Frank, P. B. Moore, and T. A. Steitz. 1998. A 9Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93: 1105–1115.
- Berglund, H., A. Rak, A. Serganov, M. Garber, and T. Härd. 1997. Solution structure of the ribosomal RNA binding protein S15 from Thermus thermophilus . Nat. Struct. Biol. 4: 20–23.
- Bocharov, E. V., A. T. Gudkov, and A. S. Arseniev. 1996. Topology of the secondary structure of ribosomal protein L7/L12 from E. coli in solution. FEBS Lett. 379: 291–294.
- Burd, C. G., and G. Dreyfuss. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621.
- Bushuev, V. N., N. F. Sepetov, and A. T. Gudkov. 1984. Symmetrical structure of the L7 protein dimer. FEBS Lett. 178: 101–104.
- Bushuev, V. N., A. T. Gudkov, A. Liljas, and N. F. Sepetov. 1989. The flexible region of protein L12 from bacterial ribosomes studied by proton nuclear magnetic resonance. J. Biol. Chem. 264: 4498–4505.
- Bycroft, M., T. J. P. Hubbard, M. Proctor, S. M. V. Freund, and A. G. Murzin. 1997. The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88: 235–242.
- Clemons, W. M., C. Davies, S. W. White, and V. Ramakrishnan. 1998. Conformational variability of the N-terminal helix in the structure of ribosomal protein S15. Structure 6: 429–438.
- Conn, G. L., D. E. Draper, E. E. Lattmann, and A. G. Gittis. 1999. Crystal structure of a conserved ribosomal protein-RNA complex. Science 284: 1171–1174.
- Cowgill, C., B. Nichols, J. Kenny, P. Butler, E. Bradbury, and R. R. Traut. 1984. Mobile domains in ribosomes revealed by proton nuclear magnetic resonance. J. Biol. Chem. 259: 15257–15263.
- Davies, C., V. Ramakrishnan, and S. W. White. 1996a. Structural evidence for specific S8-RNA and S8-protein interactions within the 30S ribosomal subunit; ribosomal protein S8 from Bacillus stearothermophilus at 1.9 Å resolution. Structure 4: 1093–1104.
- Davies, C., S. W. White, and V. Ramakrishnan. 1996b. The crystal structure of ribosomal protein L14 reveals an important organizational component of the translational apparatus. Structure 4: 55–66.
- Davies, C., R. B. Gerstner, D. E. Draper, V. Ramakrishnan, and S. W. White. 1998. The crystal structure of ribosomal protein S4 reveals a two domain molecule with an extensive RNAbinding surface: one domain shows structural homology to the ETS DNA-binding motif. EMBO J. 17: 4545–4558.
- Erdmann, V. A, S. Fahnestock, K. Higo, and M. Nomura. 1971. Role of 5S RNA in the functions of 50S ribosomal subunits. Proc. Natl. Acad. Sci. USA 68: 2932–2936.
- Golden, B. L., D. W. Hoffman, V. Ramakrishnan, and S. W. White. 1993a. Ribosomal protein S17: characterization of the three-dimensional structure by 1H and N NMR. Biochemistry 32: 12812–12820.
- Golden, B. L., V. Ramakrishnan, and S. W. White. 1993b. Ribosomal protein L6: structural evidence of gene duplication from a primitive RNA binding protein. EMBO J. 12: 4901–4908.
- Gongadze, G. M., S. V. Tishchenko, S. E. Sedelnikova, and M. B. Garber. 1993. Ribosomal proteins, TL4 and TL5, from Thermus thermophilus form hybrid complexes with 5S ribosomal RNA from different microorganisms. FEBS Lett. 386: 46–48.
- Gongadze, G. M., V. A. Meshcheryakov, A. A. Serganov, N. P. Fomenkova, E. S. Mudrik, B. H. Jonsson, A. Liljas, S. V. Nikonov, and M. B. Garber. 1999. N-terminal domain, residues 1-91, of ribosomal protein TL5 from Thermus thermophilus binds specifically and strongly to the region of 5S rRNA containing loop E. FEBS Lett. 451: 51–55.
- Gryaznova, O. I., N. L. Davydova, G. M. Gongadze, B.-H. Jonsson, M. B. Garber, and A. Liljas. 1996. A ribosomal protein from Thermus thermophilus is homologous to a general shock protein. Biochimie 78: 915–919.
- Gudkov, A. T. 1997. The L7/L12 domain of the ribosome: structural and functional studies. FEBS Lett. 407: 253–256.
- Gudkov, A. T., M. Bubunenko, and O. Gryaznova. 1991. Overexpression of L7/L12 protein with mutations in its flexible region. Biochimie 73: 1387–1389.
- Hamman, B. D., A. V. Oleinikov, G. G. Jokhadze, R. R. Traut, and D. M. Jameson. 1996. Rotational and conformation dynamics of Escherichia coli ribosomal protein L7/L12. Biochemistry 35: 16672–16679.
- Held, W. A., B. Ballow, S. Mizushima, and M. Nomura. 1974. Assembly mapping of 30S ribosomal proteins from E. coli. Further studies. J. Biol. Chem. 249: 3103–3111.
- Hinck, A. P., M. A. Marcus, S. Huang, S. Gizesiek, I. Kurtonovich, D. E. Draper, and D. A. Torchia. 1997. The RNA binding domain of ribosomal protein L11: three-dimensional structure of the RNA-bound form of the protein and its interaction with 23S rRNA. J. Mol. Biol. 274: 101–113.
- Hoffman, D. W., C. S. Cameron, C. Davies, S. W. White, and V. Ramakrishnan. 1996. Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy. J. Mol. Biol. 264: 1058–1071.
- Hosaka, H., A. Nakagawa, I. Tanaka, N. Harada, K. Sano, M. Kimura, M. Yao, and S. Wakatsuki. 1997. Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure 5: 1199–1208.
- Jaishree, T. N., V. Ramakrishnan, and S. W. White. 1996. Solution structure of prokaryotic ribosomal protein S17 by highresolution NMR spectroscopy. Biochemistry 35: 2845–2853.
- Kischa, K., W. Möller, and G. Stöffler. 1971. Reconstitution of a GTPase activity by a 50S ribosomal protein from E. coli. Nat. New Biol. 233: 62–63.
- Laurberg, M., O. Kristensen, S. Al-Karadaghi, K. Martemyanov, A. T. Gudkov, and A. Liljas. Unpublished data.
- Leijonmarck, M., and A. Liljas. 1987. Structure of the C-terminal domain of the ribosomal protein L7/L12 from Escherichia coli at 1.7Å. J. Mol. Biol. 195: 555–579.
- Leijonmarck, M., S. Erikson, and A. Liljas. 1980. Crystal structure of a ribosomal component at 2.6Å. Nature 286: 824–827.
- Leijonmarck, M., K. Appelt, J. Badger, A. Liljas, K. S. Wilson, and S. W. White. 1988. Structural comparison of the procaryotic ribosomal protein L7/L12 and L30. Proteins 3: 243–248.
- Liljas, A., and M. Garber. 1995. Ribosomal proteins and elongation factors. Curr. Opin. Struct. Biol. 5: 721–727.
- Liljas, A., and A. T. Gudkov. 1987. The structure and dynamics of ribosomal protein L12. Biochimie 69: 1043–1047.
- Liljas, A., and S. Al-Karadaghi. 1997. Structural aspects of protein synthesis. Nat. Struct. Biol. 4: 767–771.
- Lindahl, M., S. A. Svensson, A. Liljas, S. E. Sedelnikova, I. A. Eliseikina, N. P. Fomenkova, N. Nevskaya, S. V. Nikonov, M. B. Garber, T. A. Muranova, A. I. Rykunova, and R. Amons. 1994. Crystal structure of ribosomal protein S6 from Thermus thermophilus EMBO J. 13: 1249–1254.
- Marcotrigiano, J., A. C. Gingras, N. Sonenberg, and S. K. Burley. 1997. Cocrystal structure of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89: 951–961.
- Marcus, M. A., A. P. Hinck, S. Huang, D. E. Draper, and D. A. Torchia. 1997. High resolution structure of ribosomal protein L11-C76, a helical protein with a flexible loop that becomes structured upon binding to RNA. Nat. Struct. Biol. 4: 70–77.
- Marcus, M. A., R. B. Gerstner, D. E. Draper, and D. A. Torchia. 1998. The solution structure of ribosomal protein S4Δ41 reveals two subdomains and a positively charged surface that may interact with RNA. EMBO J. 17: 4559–4571.
- Matsuo, H., H. Li, A. M. McGuire, C. M. Fletcher, A. C. Gingras, N. Soneneberg, and G. Wagner. 1997. Structure of translation factor eIF4E bound to m7GDP in interaction with 4E-binding protein. Nat. Struct. Biol. 4: 717–724.
- Meador, W. E., A. R. Means, and F. A. Quiocho. 1992. Target enzyme recognition by calmodulin: 2.4Å structure of a calmodulin- peptide complex. Science 257: 1251–1255.
- Moore, P. B. 1998. The three-dimensional structure of the ribosome and its components. Annu. Rev. Biophys. Biomol. Struct. 27: 35–58.
- Nakagawa, A., T. Nakashima, M. Taniguchi, H. Harumi, M. Kimura, and I. Tanaka. 1999. The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome. EMBO J. 18: 1459–1467.
- Nevskaya, N., S. Tishchenko, A. Nikulin, S. Al-Karadaghi, A. Liljas, B. Ehresmann, C. Ehresmann, M. Garber, and S. Nikonov. 1998. Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site. J. Mol. Biol. 279: 233–244.
- Nevskaya, N., S. Tishchenko, R. Fedorov, S. Al-Karadaghi, A. Liljas, A. Kraft, W. Piendl, M. Garber, and S. Nikonov. Unpublished data.
- Nierhaus, K. 1990. Reconstitution of ribosomes, 161–189. In G. Spedding (ed.), Ribosomes and Protein Synthesis. IRL Press, Oxford, United Kingdom.
- Nikonov, S., N. Nevskaya, I. Eliseikina, N. Fomenkova, A. Nikulin, N. Ossina, M. Garber, B. H. Jonsson, C. Briand, S. Al-Karadaghi, A. Svensson, A. Ævarsson, and A. Liljas. 1996. Crystal structure of the RNA-binding ribosomal protein L1 from Thermus thermophilus . EMBO J. 15: 1350–1359.
- Nikonov, S., N. Nevskaya, R. Fedorov, A. Khairullina, S. Tishchenko, A. Nikulin, and M. Garber. 1998. Structural studies of ribosomal proteins. Biol. Chem. 379: 795–806.
- Oleinikov, A. V., B. Perroud, B. Wang, and R. R. Traut. 1993. Structural and functional domains of Escherichia coli ribosomal protein L7/L12 the hinge region is required for activity. J. Biol. Chem. 268: 917–922.
- Österberg, R., B. Sjöberg, A. Liljas, and I. Petterson. 1976. Small-angle X-ray scattering and cross-linking study of the protein L7/L12 from E. coli ribosomes. FEBS Lett. 66: 48–51.
- Porse, B. T., I. Leviev, A. S. Mankin, and R. A. Garrett. 1998. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase center. J. Mol. Biol. 276: 391–404.
- Ramakrishnan, V. , and S. W. White. 1992. The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature 358: 768–771.
- Ramakrishnan, V. , and S. W. White. 1998. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem. Sci. 23: 208–212.
- Rossmann, M. G., and A. Liljas. 1974. Recognition of structural domains in globular proteins. J. Mol. Biol. 85: 177–181.
- Rould, M. A., J. J. Perona, and T. A. Steitz. 1991. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase. Nature 352: 213–218.
- Stoldt, M., J. Wöhnert, M. Görlach, and L. R. Brown. 1998. The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress protein and glutaminyl-tRNA synthetase. EMBO J. 17: 6377–6384.
-
Traut, R. R., D. Tewari, A. Sommer, G. Gavino, D. Glitz, and B. Wang. 1986. Protein topography of ribosomal functional domains: effect of monoclonal antibodies to different epitopes in E. coli protein L7/L12 on ribosome function and structure, p. 286–308. In
B. Hardesty and G. Kramer (ed.), Structure, Function and Genetics of Ribosomes. Springer-Verlag Press, New York, N.Y.
10.1007/978-1-4612-4884-2_17 Google Scholar
- Traut, R. R., D. Dey, D. Bochkariov, A. V. Oleinikov, G. G. Jokhadse, B. D. Hamman, and D. M. Jameson. 1995. Location and domain structure of Escherichia coli ribosomal protein L7/L12: site specific cysteine crosslinking and attachment of fluorescent probes. Biochem. Cell Biol. 73: 949–958.
- Unge, J., S. Al-Karadaghi, A. Liljas, B.-H. Jonsson, I. Eliseikina, N. Ossina, N. Nevskaya, N. Fomenkova, M. Garber, and S. Nikonov. 1997. A mutant form of ribosomal protein L1 reveals conformational flexibility. FEBS Lett. 411: 53–59.
- Unge, J., A. Å berg, S. Al-Kharadaghi, A. Nikulin, S. Nikonov, N. L. Davydova, N. Nevskaya, M. Garber, and A. Liljas. 1998. The crystal structure of ribosomal protein L22 from Thermus thermophilus. An RNA binding protein at the polypeptide exit channel. Structure 6: 1577–1586.
- Völker, U., S. Engelmann, B. Maul, S. Riethdorf, R. Schmid, H. Mach, and M. Hecker. 1994. Analysis of the induction of general stress proteins of Bacillus subtilis Microbiology 140: 741–752.
- Wilson, K. S., K. Appelt, J. Badger, I. Tanaka, and S. W. White. 1986. Crystal structure of prokaryotic ribosomal protein. Proc. Natl. Acad. Sci. USA 83: 7251–7255.
- Wimberly, B. T., S. W. White, and V. Ramakrishnan. 1997. The structure of ribosomal protein S7 at 1.9Å resolution reveals a beta-hairpin motif that binds double stranded nucleic acids. Structure 5: 1187–1198.
- Wimberly, B. T., R. Guymon, J. P. McCutcheon, S. W. White, and V. Ramakrishnan. 1999. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97: 491–502.
- Xing, Y., D. Guha Takurta, and D. E. Draper. 1997. The RNA binding domain of ribosomal protein L11 is structurally similar to homeodomains. Nat. Struct. Biol. 4: 24–27.
- Yonath, A., and F. Franceschi. 1997. New RNA recognition features revealed in ancient ribosomal proteins. Nat. Struct. Biol. 4: 3–5.