Mechanism of Bacterial Translation Termination and Ribosome Recycling
Måns Ehrenberg
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorVildan Dincbas
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorDavid Freistroffer
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorValerie Heurgué-Hamard
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorReza Karimi
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorMichael Pavlov
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorRichard H. Buckingham
UPR 9073 du CNRS, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, Paris, 75005 France
Search for more papers by this authorMåns Ehrenberg
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorVildan Dincbas
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorDavid Freistroffer
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorValerie Heurgué-Hamard
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorReza Karimi
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorMichael Pavlov
Department of Cell and Molecular Biology, BMC, Box 596, S-751 24 Uppsala, Sweden
Search for more papers by this authorRichard H. Buckingham
UPR 9073 du CNRS, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, Paris, 75005 France
Search for more papers by this authorRoger A. Garrett
Search for more papers by this authorSummary
The elucidation of the role of release factor 3 (RF3) in translation termination and the demonstration that GTP hydrolysis was needed for RF3 action became possible with the development of improved purified in vitro systems for protein synthesis. In the absence of RF3, the inhibitory action of RF1 on ribosome recycling can be reduced by increasing the ribosome-recycling factor (RRF) concentration, suggesting that whatever the action of RRF may be, it is incompatible with the presence of RF1 on the ribosome. The experiments in vitro with the purified translation system show that ribosome recycling from initiation via protein elongation and termination of protein synthesis depends strictly on the presence of IF3. This implies that RRF and EF-G together split the ribosome into its subunits after termination and that this step is the overture to ribosome recycling back to initiation of translation from the posttermination state. The fate of the mRNA after termination and ribosome recycling is highly relevant for translation of multicistronic mRNAs. The in vitro data suggest that when termination of protein synthesis is followed by the action of RRF, EF-G, and IF3 the 30S particle remains attached to the mRNA, allowing the latter to diffuse long distances along the subunit. In the presence of GTP, RF3 accelerates recycling of RF1 and RF2 by enhancing their rates of dissociation after termination of translation.
References
- Adhin, M. R., and J. van Duin. 1990. Scanning model for translational reinitiation in eubacteria. J. Mol. Biol. 213: 811–818.
- Bjornsson, A., and L. A. Isaksson. 1996. Accumulation of a mRNA decay intermediate by ribosomal pausing at a stop codon. Nucleic Acids Res. 24: 1753–1757.
- Bourne, H. R., D. A. Sanders, and F. McCormick. 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127.
- Brot, N., C. Spears, and H. Weissbach. 1971. The interaction of transfer factor G, ribosome and guanosine nucleotide in the presence of fusidic acid. Arch. Biochem. Biophys. 143: 286–296.
- Buckingham, R. H., G. Grentzmann, and L. Kisselev. 1997. Polypeptide chain release factors. Mol. Microbiol. 24: 449–456.
- Capecchi, M. R. 1967a. Polypeptide chain termination in vitro: isolation of a release factor. Proc. Natl. Acad. Sci. USA 58: 1144–1151.
- Capecchi, M. R. 1967b. A rapid assay for polypeptide chain termination. Biochem. Biophys. Res. Commun. 28: 773–778.
- Caskey, C. T., R. Tompkins, E. Scolnick, T. Caryk, and M. Nirenberg. 1968. Sequential translation of trinucleotide codons for the initiation and termination of protein synthesis. Science 162: 135–138.
- Caskey, C. T., E. Scolnick, R. Tompkins, J. Goldstein, and G. Milman. 1969. Peptide chain termination: codon, protein factor, and ribosomal requirements. Cold Spring Harbor Symp. Quant. Biol. 34: 479.
- Caskey, C. T., A. L. Beaudet, E. M. Scolnick, and M. Rosman. 1971. Peptidyl transferase hydrolysis of fmet-tRNA. Proc. Natl. Acad. Sci. USA 68: 3163–3167.
- Caskey, C. T., W. C. Forrester, W. P. Tate, and C. D. Ward. 1984. Cloning of the Escherichia coli release factor 2 gene. J. Bacteriol. 158: 365–368.
- Craigen, W. J., C. C. Lee, and C. T. Caskey. 1990. Recent advances in peptide chain termination. Mol. Microbiol. 4: 861–865.
- Davis, B. D. 1971. Role of subunits in the ribosome cycle. Nature 231: 153–157.
- Dincbas, V. Unpublished data.
- Draper, D. E. 1996. Translational initiation, p. 902–908. In F. C. , R. Curtiss, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, D.C.
- Ebihara, K., and Y. Nakamura. 1999. C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids. RNA 5: 739–750.
- Freistroffer, D. V., M. Y. Pavlov, J. MacDougall, R. H. Buckingham, and M. Ehrenberg. 1997. Release factor RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP dependent manner. EMBO J. 16: 4126–4133.
- Frolova, L., X. Le Goff, H. H. Rasmussen, S. Cheperegin, G. Drugeon, M. Kress, I. Arman, A. L. Haenni, J. E. Celis, M. Philippe, J. Justesen, and L. L. Kisselev. 1994. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372: 701–703.
- Frolova, L., X. Le Goff, G. Zhouravleva, E. Davydova, M. Philippe, and L. L. Kisselev. 1996. Eukaryotic polypeptide chain release factor eRF3 is a guanosine triphosphatase. RNA 2: 334–341.
- Frolova, L. Y., J. L. Simonsen, T. I. Merkulova, D. Y. Litvinov, P. M. Martensen, V. O. Rechinsky, J. H. Camonis, L. L. Kisselev, and J. Justesen. 1998. Functional expression of eukaryotic polypeptide chain release factors 1 and 3 by means of baculovirus / insect cells and complex formation between the factors. Eur. J. Biochem. 256: 36–44.
- Frolova, L. Y., R. Y. Tsivkovskii, G. F. Sivolobova, N. Y. Oparina, O. I. Serpinski, V. M. Blinov, S. I. Tatkov, and L. L. Kisselev. 1999. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5: 1014–1020.
- Goldstein, J., G. Milman, E. Scolnick, and T. Caskey. 1970. Peptide chain termination. VI: Purification and site of action of S. Proc. Natl. Acad. Sci. USA 65: 430–437.
- Goldstein, J. L., and C. T. Caskey. 1970. Peptide chain termination: effect of protein S on ribosomal binding of release factors. Proc. Natl. Acad. Sci. USA 67: 537–543.
- Grentzmann, G., D. Brechemier-Baey, V. Heurgué, L. Mora, and R. H. Buckingham. 1994. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli Proc. Natl. Acad. Sci. USA 91: 5848–5852.
- Grentzmann, G., P. J. Kelly, S. Laalami, M. Shuda, M. A. Firpo, Y. Cenatiempo, and A. Kaji. 1998. Release factor RF-3 GTPase activity acts in disassembly of the ribosome termination complex. RNA 4: 973–983.
- Gualerzi, C., C. L. Pon, and A. Kaji. 1971. Initiation factor dependent release of aminoacyl-tRNAs from complexes of 30S ribosomal subunits, synthetic polynucleotide and aminoacyl tRNA. Biochem. Biophys. Res. Commun. 45: 1312–1319.
- Hartz, D., J. Binkley, T. Hollingsworth, and L. Gold. 1990. Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. Genes Dev. 4: 1790–1800.
- Heurgué-Hamard, V., R. Karimi, L. Mora, J. MacDougall, C. Leboeuf, G. Grentzmann, M. Ehrenberg, and R. H. Buckingham. 1998. Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome. EMBO J. 17: 808–816.
- Hirashima, A., and A. Kaji. 1970. Factor dependent breakdown of polysomes. Biochem. Biophys. Res. Commun. 41: 877–883.
- Hirashima, A., and A. Kaji. 1972. Factor-dependent release of ribosomes from messenger RNA: requirement for two heat-stable factors. J. Mol. Biol. 65: 43–58.
- Ichikawa, S., and A. Kaji. 1989. Molecular cloning and expression of ribosomal releasing factor. J. Biol. Chem. 264: 20054–20059.
- Ichikawa, S., M. Ryoji, Z. Siegfried, and A. Kaji. 1989. Localization of the ribosome-releasing factor gene in the Escherichia coli chromosome. J. Bacteriol. 171: 3689–3695.
- Ito, K., K. Ebihara, M. Uno, and Y. Nakamura. 1996. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc. Natl. Acad. Sci. USA 93: 5443–5448.
- Ito, K., K. Ebihara, and Y. Nakamura. 1998a. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA 4: 958–972.
- Ito, K., M. Uno, and Y. Nakamura. 1998b. Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons. Proc. Natl. Acad. Sci. USA 95: 8165–8169.
- Janosi, L., I. Shimizu, and A. Kaji. 1994. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Proc. Natl. Acad. Sci. USA 91: 4249–4253.
- Janosi, L., H. Hara, S. Zhang, and A. Kaji. 1996a. Ribosome recycling by ribosome recycling factor (RRF): an important but overlooked step of protein synthesis. Adv. Biophys. 32: 121–201.
- Janosi, L., R. Ricker, and A. Kaji. 1996b. Dual function of ribosome recycling factor in protein biosynthesis: disassembling the termination complex and preventing translational errors. Biochimie 78: 959–969.
- Janosi, L., S. Mottagui-Tabar, L. A. Isaksson, Y. Sekine, E. Ohtsubo, S. Zhang, S. Goon, S. Nelken, M. Shuda, and A. Kaji. 1998. Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J. 17: 1141–1151.
- Kaempfer, R. 1968. Ribosomal subunit exchange during protein synthesis. Proc. Natl. Acad. Sci. USA 61: 106–113.
- Kaempfer, R. 1972. Initiation factor IF-3: a specific inhibitor of ribosomal subunit association. J. Mol. Biol. 71: 583–598.
- Karimi, R. Unpublished data.
- Karimi, R., M. Y. Pavlov, V. Heurgue-Hamard, R. H. Buckingham, and M. Ehrenberg. 1998. Initiation factors IF1 and IF2 synergistically remove peptidyl-tRNAs with short polypeptides from the P-site of translating Escherichia coli ribosomes. J. Mol. Biol. 281: 241–252.
- Karimi, R., M. Pavlov, R. H. Buckingham, and M. Ehrenberg. 1999. Novel roles for classical factors at the interface between translation termination and initiation. Molec. Cell 3: 601–609.
- Konecki, D. S., K. C. Aune, W. Tate, and C. T. Caskey. 1977. Characterization of reticulocyte release factor. J. Biol. Chem. 252: 4514–4520.
- MacDougall, J. Unpublished results.
- Martin, J., and R. E. Webster. 1975. The in vitro translation of a terminating signal by a single Escherichia coli ribosome. J. Biol. Chem. 250: 8132–8139.
- Merkulova, T. I., L. Y. Frolova, M. Lazar, J. Camonis, and L. L. Kisselev. 1999. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 443: 41–47.
- Mikuni, O., K. Ito, J. Moffat, K. Matsumura, K. McCaughan, T. Nobukuni, W. Tate, and Y. Nakamura. 1994. Identification of the prfC gene, which encodes peptide chain release factor 3 of Escherichia coli Proc. Natl. Acad. Sci. USA 91: 5798–5802.
- Milman, G., J. Goldstein, E. Scolnick, and T. Caskey. 1969. Peptide chain termination. III. Stimulation of in vitro termination. Proc. Natl. Acad. Sci. USA 63: 183–190.
- Nakamura, Y., and K. Ito. 1998. How protein reads the stop codon and terminates translation. Genes Cells 3: 265–278.
- Nakamura, Y., K. Ito, and L. A. Isaksson. 1996. Emerging understanding of translation termination. Cell 87: 147–150.
- Ogawa, K., and A. Kaji. 1975. Requirement for ribosome releasing factor for the release of ribosomes at the termination codon. J. Biochem. (Tokyo) 58: 411–419.
- Paushkin, S. V., V. V. Kushnirov, V. N. Smirnov, and M. D. Ter- Avanesyan. 1997. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol. Cell. Biol. 17: 2798–2805.
- Pavlov, M. Unpublished observations.
- Pavlov, M. Y., D. Freistroffer, J. MacDougall, R. H. Buckingham, and M. Ehrenberg. 1997a. Fast recycling of E. coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. EMBO J. 16: 4134–4141.
- Pavlov, M. Y., D. V. Freistroffer, V. Heurgué-Hamard, R. H. Buckingham, and M. Ehrenberg. 1997b. Release factor RF3 abolishes competition between release factor RF1 and ribosome recycling factor (RRF) for a ribosome binding site. J. Mol. Biol. 273: 389–401.
- Pavlov, M. Y., D. V. Freistroffer, V. Dincbas, J. MacDougall, R. H. Buckingham, and M. Ehrenberg. 1998. A direct estimation of the context effect on the efficiency of termination. J. Mol. Biol. 284: 579–590.
- Pel, H. J., J. G. Moffat, K. Ito, Y. Nakamura, and W. P. Tate. 1998. Escherichia coli release factor-3—resolving the paradox of a typical G-protein structure and atypical function with guanine- nucleotides. RNA 4: 47–54.
- Pon, C. L., and C. O. Gualerzi. 1986. Mechanism of translational initiation in prokaryotes. IF3 is released from ribosomes during and not before 70 S initiation complex formation. FEBS Lett. 195: 215–219.
- Risuleo, G., C. Gualerzi, and C. Pon. 1976. Specificity and properties of the destabilization, induced by initiation factor IF-3, of ternary complexes of the 30-S ribosomal subunit, aminoacyl-tRNA and polynucleotides. Eur. J. Biochem. 67: 603–613.
- Rodnina, M. V., A. Savelsbergh, V. I. Katunin, and W. Wintermeyer. 1997. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385: 37–41.
- Sabol, S., M. A. Sillero, K. Iwasaki, and S. Ochoa. 1970. Purification and properties of initiation factor F3. Nature 228: 1269–1273.
- Sarabhai, A., and S. Brenner. 1967.A mutant which reinitiates the polypeptide chain after chain termination. J. Mol. Biol. 27: 145–162.
- Scolnick, E. M., R. Tompkins, C. T. Caskey, and M. Nirenberg. 1968. Release factors differing in specificity for terminator codons. Proc. Natl. Acad. Sci. USA 61: 768–774.
- Subramanian, A. R., and B. D. Davis. 1970. Activity of initiation factor F3 in dissociating Escherichia coli ribosomes. Nature 228: 1273–1275.
- Subramanian, A. R., and B. D. Davis. 1973. Release of 70 S ribosomes from polysomes in Escherichia coli J. Mol. Biol. 74: 45–56.
- Subramanian, A. R., E. Z. Ron, and B. D. Davis. 1968. A factor required for ribosome dissociation in Escherichia coli Proc. Natl. Acad. Sci. USA 61: 761–767.
- Subramanian, A. R., B. D. Davis, and R. J. Beller. 1969. The ribosome dissociation factor and the ribosome-polysome cycle. Cold Spring Harbor Symp. Quant. Biol. 34: 223–230.
- Tate, W. P., C. M. Brown, and B. Kastner. 1990. Codon recognition by the polypeptide release factor, p. 393–401. In W. E. Hill , A. Dahlberg , R. A. Garrett , P. B. Moore , D. Schlessinger , and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
- Weiss, R. B., J. P. Murphy, and J. A. Gallant. 1984. Genetic screen for cloned release factor genes. J. Bacteriol. 158: 362–364.