Aminoglycoside Antibiotics and Decoding
Joseph D. Puglisi
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorScott C. Blanchard
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorKam D. Dahlquist
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorRobert G. Eason
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorDominique Fourmy
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorStephen R. Lynch
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorMichael I. Recht
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorSatoko Yoshizawa
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorJoseph D. Puglisi
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorScott C. Blanchard
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorKam D. Dahlquist
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorRobert G. Eason
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorDominique Fourmy
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorStephen R. Lynch
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorMichael I. Recht
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorSatoko Yoshizawa
Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305-5421
Search for more papers by this authorRoger A. Garrett
Search for more papers by this authorSummary
Aminoglycoside antibiotics bind directly to 16S rRNA in the 30S subunit of bacterial ribosomes and decrease the fidelity of translation. Aminoglycoside antibiotics remain important therapeutic agents and represent the archetype for RNA-targeted antibiotics. This chapter presents an overview of the investigations of how aminoglycoside antibiotics bind to rRNA and the insights these studies have provided into the decoding process. Throughout the chapter, the term “aminoglycoside” will implicitly refer to this subclass. It is within this conserved decoding region RNA that aminoglycoside antibiotics bind. The chemical groups that are common among aminoglycoside antibiotics direct specific interaction with the RNA. The major sequence difference between all prokaryotic ribosomes and all eukaryotic ribosomes in the aminoglycoside binding site is an A1408-toG1408 change. However, only low-level resistance was observed to G418 and paromomycin, which are the most effective aminoglycosides against eukaryotic organisms. The major mechanism of aminoglycoside resistance is enzymatic modification of the drug. Molecular contacts between A1492 and A1493 and mRNA during decoding may also explain the miscoding induced by aminoglycoside antibiotics. The work on aminoglycoside antibiotics has revealed the details of how aminoglycosides bind to the ribosome, how resistance occurs, and how selectivity for prokaryotes is achieved. Only the combination of structure determination, biochemical, and biophysical approaches provides true insights into the workings of the ribosome. The use of a small oligonucleotide was essential for this work.
References
- Alangaden, G. J., B. N. Kreiswirth, A. Aouad, M. Khetarpal, F. R. Igno, S. L. Moghazeh, E. K. Manavathu, and S. A. Lerner. 1998. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis Antimicrob. Agents Chemother. 42: 1295–1297.
- Allain, F. H.-T., and G. Varani. 1995. Structure of the P1 helix from Group I self-splicing introns. J. Mol. Biol. 250: 333–353.
- Bacino, C., T. R. Prezant, X. Bu, P. Fournier, and N. Fischel- Ghodsian. 1995. Susceptibility mutations in the mitochondrial small ribosomal RNA gene in aminoglycoside induced deafness. Pharmacogenetics 5: 165–172.
- Beauclerk, A. A. D., and E. Cundliffe. 1987. Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J. Mol. Biol. 193: 661–671.
- Bollen, A., T. Helser, T. Yamada, and J. Davies. 1969. Altered ribosomes in antibiotic-resistant mutants of E. coli. Cold Spring Harbor Symp. Quant. Biol. 34: 95–100.
- Bonny, C., P. E. Montandon, S. Marc-Martin, and E. Stutz. 1991. Analysis of streptomycin-resistance of Escherichia coli mutants. Biochim. Biophys. Acta 1089: 213–219.
- Botto, R. E., and B. Coxon. 1983. Nitrogen-15 nuclear magnetic resonance spectroscopy of neomycin B and related aminoglycosides. J. Am. Chem. Soc. 105: 1021–1028.
- Cate, J. H., A. R. Gooding, E. Podell, K. Zhou, B. Golden, C. E. Kundrot, T. R. Cech, and J. A. Doudna. 1996. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273: 1678–1685.
- Cunningham, P. R., K. Nurse, A. Bakin, C. J. Weitzmann, M. Pflumm, and J. Ofengand. 1992. Interaction between the two conserved single-stranded regions at the decoding site of small subunit ribosomal RNA is essential for ribosome function. Biochemistry 31: 12012–12022.
- Cunningham, P. R., K. Nurse, C. J. Weitzmann, and J. Ofengand. 1993. Functional effects of base changes which further define the decoding center of Escherichia coli 16S ribosomal RNA. Mutation of C1404, G1405, C1496, G1497, U1498. Biochemistry 32: 7172–7180.
- Davies, C., D. E. Bussiere, B. L. Golden, S. J. Porter, V. Ramakrishnan, and S. W. White. 1998. Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance. J. Mol. Biol. 279: 873–888.
- Davies, J., and B. D. Davis. 1968. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics: the effect of drug concentration. J. Biol. Chem. 243: 3312–3316.
- Davies, J., and G. D. Wright. 1997. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 5: 234–240.
- Davies, J., W. Gilbert, and L. Gorini. 1964. Streptomycin, suppression, and the code. Proc. Natl. Acad. Sci. USA 51: 883–890.
- Davies, J., L. Gorini, and B. D. Davis. 1965. Misreading of RNA code words induced by aminoglycoside antibiotics. Mol. Pharmacol. 1: 93–106.
- DeStasio, E. A., and A. E. Dahlberg. 1990. Effects of mutagenesis of a conserved base-paired site near the decoding region of Escherichia coli 16S ribosomal RNA. J. Mol. Biol. 212: 127–133.
- DeStasio, E. A., D. Moazed, H. F. Noller, and A. E. Dahlberg. 1989. Mutations in 16S ribosomal RNA disrupt antibiotic-RNA interactions. EMBO J. 8: 1213–1216.
- Edelmann, P., and J. Gallant. 1977. Mistranslation in E. coli. Cell 10: 131–137.
- Fast, R., T. H. Eberhard, T. Ruusala, and C. G. Kurland. 1987. Does streptomycin cause an error catastrophe? Biochimie 69: 131–136.
- Fourmy, D., M. I. Recht, S. C. Blanchard, and J. D. Puglisi. 1996. Structure of the A site of E. coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274: 1367–1371.
- Fourmy, D., M. I. Recht, and J. D. Puglisi. 1998a. Binding of neomycin-class aminoglycoside antibiotics to the A site of 16S rRNA. J. Mol. Biol. 277: 347–362.
- Fourmy, D., S. Yoshizawa, and J. D. Puglisi. 1998b. Paromomycin binding induces a local conformational change in the A site of 16S rRNA. J. Mol. Biol. 277: 333–345.
- Gale, E. F., E. Cundliffe, P. E. Reynolds, M. H. Richmond, and M. J. Waring. 1981. The Molecular Basis of Antibiotic Action. John Wiley & Sons, London, United Kingdom.
- Green, R., and H. F. Noller. 1997. Ribosomes and translation. Annu. Rev. Biochem. 66: 679–716.
- Guan, M.-X., N. Fischel-Ghodsian, and G. Attardi. 1996. Biochemical evidence for nuclear gene involvement in phenotype of non-syndromic deafness associated with mitochondrial 12S rRNA mutation. Hum. Mol. Genet. 5: 963–971.
- Gutell, R. R. 1994. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res. 22: 3502–3507.
- Hendrix, M., E. S. Priestly, G. F. Joyce, and C.-H. Wong. 1997. Direct observation of aminoglycoside-RNA interactions by surface plasmon resonance. J. Am. Chem. Soc. 119: 3641–3648.
- Karimi, R., and M. Ehrenberg. 1994. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. Eur. J. Biochem. 226: 355–360.
- Kühberger, R., W. Piepersberg, A. Petzet, P. Buckel, and A. Böck. 1979. Alteration of ribosomal protein L6 in gentamicin-resistant strains of Escherichia coli. Effects on fidelity of protein synthesis. Biochemistry 18: 187–193.
- Kurland, C. G. 1992. Translational accuracy and the fitness of bacteria. Annu. Rev. Genet. 26: 29–50.
- Lodmell, J. S., R. R. Gutell, and A. E. Dahlberg. 1995. Genetic and comparative analyses reveal an alternative secondary structure in the region of nt 912 of Escherichia coli 16S rRNA. Proc. Natl. Acad. Sci. USA 92: 10555–10559.
- Lynch, S., and J. Puglisi. Unpublished data.
- Miyaguchi, H., H. Narita, K. Sakamoto, and S. Yokoyama. 1996. An antibiotic-binding motif of an RNA fragment derived from the A-site-related region of Esherichia coli 16S rRNA. Nucleic Acids Res. 24: 3700–3706.
- Moazed, D., and H. F. Noller. 1986. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47: 985–994.
- Moazed, D., and H. F. Noller. 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327: 389–394.
- Moazed, D., and H. F. Noller. 1990. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J. Mol. Biol. 211: 135–145.
- Pape, T., W. Wintermeyer, and M. V. Rodnina. 1998. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17: 7490–7497.
- Patapov, A. P., F. J. Triana-Alonso, and K. Nierhaus. 1995. Ribosomal decoding processes at codons in the A or P sites depend differently on 2'-OH groups. J. Biol. Chem. 270: 17680–17684.
- Powers, T., and H. F. Noller. 1994. The 530 loop of 16S rRNA: a signal to EF-Tu? Trends in Genetics 10: 27–31.
- Powers, T., and H. F. Noller. 1995. Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1: 194–209.
- Prammananan, T., P. Sander, B. A. Brown, K. Frischkorn, G. O. Onyi, Y. Zhang, E. C. Bottger, and R. J. Wallace. 1998. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae J. Infect. Dis. 177: 1573–1581.
- Prezant, T. R., J. V. Agapian, M. C. Bohlman, X. Bu, S. Oztas, W.-Q. Qui, K. S. Amos, G. A. Cortopassi, L. Jaber, J. I. Rotter, M. Shohat, and N. Fischel-Ghodsian. 1993. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat. Genet. 4: 289–294.
- Price, K. E., J. C. Godfrey, and H. Kawaguchi. 1974. Aminoglycoside antibiotics containing 2-deoxystreptamine. Adv. Appl. Microbiol. 18: 191–307.
- Puglisi, J. D., and J. R. Williamson. 1999. RNA interactions with small ligands and peptides, p. 403–425. In T. R. Cech and R. Gesteland (ed.), The RNA World, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y.
- Purohit, P., and S. Stern. 1994. Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature 370: 659–662.
- Recht, M. , and J. Puglisi. Unpublished data.
- Recht, M. I., D. Fourmy, S. C. Blanchard, K. D. Dahlquist, and J. D. Puglisi. 1996. RNA sequence determinants for aminoglycoside binding to an A-site rRNA model oligonucleotide. J. Mol. Biol. 262: 421–436.
- Recht, M. I., S. Douthwaite, K. D. Dahlquist, and J. D. Puglisi. 1999a. Effect of mutations in the A site of 16S rRNA on aminoglycoside antibiotic-ribosome interaction. J. Mol. Biol. 286: 33–43.
- Recht, M. I., S. Douthwaite, and J. D. Puglisi. 1999b. Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J. 18: 3133–3138.
- Rodnina, M. V. , R. Fricke , L. Kuhn , and W. Wintermeyer. 1995. Codon-dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. EMBO J. 14: 2613–2619.
- Rose, S. J., P. T. Lowary, and O. C. Uhlenbeck. 1983. Binding of yeast tRNAPhe anticodon arm to Escherichia coli 30S ribosomes. J. Mol. Biol. 167: 103–117.
- Shaw, K. J., P. N. Rather, R. S. Hare, and G. H. Miller. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57: 138–163.
- Spangler, E. A., and E. H. Blackburn. 1985. The nucleotide sequence of the 17S ribosomal RNA gene of Tetrahymena thermophila and the identification of point mutations resulting in resistance to the antibiotics paromomycin and hygromycin. J. Biol. Chem. 260: 6334–6340.
- Viani Puglisi, E., and J. D. Puglisi. 1998. Nuclear magnetic resonance spectroscopy of RNA, p. 117–146. In R. W. Simons and M. Grunberg-Manago (ed.), RNA Structure and Function. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y.
- Wilhelm, J. M., J. J. Jessop, and S. E. Pettitt. 1978. Aminoglycoside antibiotics and eukaryotic protein synthesis: stimulation of errors in the translation of natural messengers in extracts of cultured human cells. Biochemistry 17: 1149–1153.
- Wong, C.-H., M. Hendrix, E. S. Priestley, and W. A. Greenberg. 1998. Specificity of aminoglycoside antibiotics for the A-site of the decoding region of ribosomal RNA. Chem. Biol. 5: 397–406.
- Yoshizawa, S., D. Fourmy, and J. D. Puglisi. 1998. Structural origins of gentamicin antibiotic action. EMBO J. 17: 6437–6448.
- Yoshizawa, S., D. Fourmy, and J. D. Puglisi. 1999. Recognition of the codon-anticodon helix by ribosomal RNA. Science 285: 1722–1725.
- Zimmermann, R. A., C. L. Thomas, and J. Wower. 1990. Structure and function of rRNA in the decoding domain and in the peptidyl transferase center, p. 331–347. In W. E. Hill , A. Dahlberg , R. A. Garrett , P. B. Moore , D. Schlessinger , and J. R. Warner (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.