The States, Conformational Dynamics, and Fusidic Acid-Resistant Mutants of Elongation Factor G
Anders Liljas
Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
Search for more papers by this authorOle Kristensen
Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
Search for more papers by this authorMartin Laurberg
Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
Search for more papers by this authorSalam Al-Karadaghi
Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
Search for more papers by this authorAnatoly Gudkov
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
Search for more papers by this authorKirill Martemyanov
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
Search for more papers by this authorDiarmaid Hughes
Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
Search for more papers by this authorIvan Nagaev
Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
Search for more papers by this authorAnders Liljas
Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
Search for more papers by this authorOle Kristensen
Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
Search for more papers by this authorMartin Laurberg
Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
Search for more papers by this authorSalam Al-Karadaghi
Molecular Biophysics, Lund University, Box 124, SE-22100 Lund, Sweden
Search for more papers by this authorAnatoly Gudkov
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
Search for more papers by this authorKirill Martemyanov
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
Search for more papers by this authorDiarmaid Hughes
Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
Search for more papers by this authorIvan Nagaev
Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, SE-75124 Uppsala, Sweden
Search for more papers by this authorRoger A. Garrett
Search for more papers by this authorSummary
This chapter summarizes the current knowledge and proposes a structural model for the function of elongation factor G (EF-G). The large number of mutations associated with fusidic acid resistance are an essential ingredient in this analysis. Recent investigations of a mutant EF-G with a different crystal packing have led to a complete interpretation of domain III at relatively low resolution. The functional cycle of EF-G can be described as a number of states both on and off the ribosome. The different states of EF-G may not necessarily be associated with different conformations of EF-G, but to the extent that there are different conformations, they will be related to different states. The density of EF-G could be identified with difference methods and compared to the crystallographic GDP conformation. The mutant G16V is fusidic acid sensitive compared to wt Thermus thermophilus EF-G, which is relatively resistant to the antibiotic. During one of the subsequent steps, EF-G adopts an open conformation like the one observed by cryo-EM. Since it overlaps the A-site tRNA, translocation must already have occurred, as is well known from studies of fusidic acid inhibition of protein synthesis. When EF-G has dissociated, it has the intermediate GDP conformation.
References
- Abdulkarim, F., L. Liljas, and D. Hughes. 1994. Mutations to kirromycin resistance occur in the interface of domains I and III of EF-Tu•GTP. FEBS Lett. 352: 118–122.
- Abel, K., M. D. Yoder, R. Hilgenfeldt, and F. Jurnak. 1996. An α to β conformational switch in EF-Tu from Escherichia coli . Structure 4: 1153–1159.
- Ævarsson, A., E. Brashnikov, M. Garber, J. Zheltonosova, Y. Chirgadze, S. Al-Karadaghi, L. A. Svensson, and A. Liljas. 1994. Three-dimensional structure of the ribosomal translocase: elongation G from Thermus thermophilus EMBO J. 13: 3669–3677.
- Agrawal, R. K., P. Penczek, R. A. Grassucci, and J. Frank. 1998. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl. Acad. Sci. USA 95: 6134–6138.
- Al-Karadaghi, S., A. Ævarsson, M. Garber, J. Zheltonosova, and A. Liljas. 1996. The structure of elongation factor G in complex with GDP: conformational flexibility and nucleotide exchange. Structure 4: 555–565.
- Berchtold, H., L. Reshetnikova, C. O. Reiser, N. K. Schirmer, M. Sprinzl, and R. Hilgenfeldt. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365: 126–132.
-
Berendsen, S., and H. J. C. Hayvard. 1998. Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthetase and T4 lysozyme. Proteins
30: 144–154.
10.1002/(SICI)1097-0134(19980201)30:2<144::AID-PROT4>3.0.CO;2-N PubMed Web of Science® Google Scholar
-
Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature
248: 125–132.
10.1038/348125a0 Google Scholar
- Czworkowski, J., and P. B. Moore. 1997. The conformational properties of elongation factor G and the mechanism of translocation. Biochemistry 36: 10327–10334.
- Czworkowski, J., and P. B. Moore. Personal communication.
- Czworkowski, J., J. Wang, T. A. Steitz, and P. B. Moore. 1994. The crystal structure of elongation factor G complexed with GDP, at 2.7Å resolution. EMBO J. 13: 3661–3668.
- Johanson, U., A. Ævarsson, A. Liljas, and D. Hughes. 1996. The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. J. Mol. Biol. 258: 420–432.
- Kaziro, Y. 1978. The role of guanosine 5′-triphosphate in polypeptide chain elongation. Biochim. Biophys. Acta 505: 95–127.
- Kjeldgaard, M., and J. Nyborg. 1992. Refined structure of elongation factor EF-Tu from Escherichia coli. J. Mol. Biol. 223: 721–742.
- Kjeldgaard, M., P. Nissen, S. Thirup, and J. Nyborg. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1: 35–50.
- Kraulis, P. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24: 946–950.
- Laurberg, M., O. Kristensen, S. Al-Karadaghi, K. Martemyanov, A. T. Gudkov, and A. Liljas. Unpublished data.
- Liljas, A., and S. Al-Karadaghi. 1997. Structural aspects of protein synthesis. Nat. Struct. Biol. 4: 767–771.
- Liljas, A., A. Ævarsson, S. Al-Karadaghi, M. Garber, J. Zheltonosova, and E. Brazhnikov. 1995. Crystallographic studies of elongation factor G. Biochem. Cell Biol. 73: 1209–1216.
- Macvanin, M., U. Johanson, M. Ehrenberg, and D. Hughes. Fusidic acid resistant EF-G reduces the accumulation of (p)ppGpp. Submitted for publication.
- Martemyanov, K. A., A. S. Yarunin, A. Liljas, and A. S. Gudkov. Unpublished data.
- Nagaev, I., J. Björkman, D. I. Andersson, and D. Hughes. Unpublished data.
- Nissen, P., M. Kjeldgaard, S. Thirup, L. Polekhina, L. Reshetnikova, B. F. C. Clark, and J. Nyborg. 1995. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270: 1464–1472.
- Nissen, P., S. Thirup, M. Kjeldgaard, and J. Nyborg. 1999. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 7: 143–156.
- Polekhina, G., S. Thirup, M. Kjeldgaard, P. Nissen, C. Lippmann, and J. Nyborg. 1996. Helix unwinding in the effector region of elongation factor EF-Tu•GDP. Structure 4: 1141–1151.
- Ramakrishnan, V., and S. W. White. 1998. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem. Sci. 23: 208–212.
- Rodnina, M. V., T. Pape, R. Fricke, L. Kuhn, and W. Wintermeyer. 1996. Initial binding of the elongation factor Tu•GTP • aminoacyl-tRNA complex preceding codon recognition on the ribosome. J. Biol. Chem. 271: 646–652.
- Rodnina, M. V., A. Savelsbergh, V. I. Katunin, and W. Wintermeyer. 1997. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385: 37–41.
- Stark, H., M. V. Rodnina, J. Rinke-Appel, R. Brimacombe, W. Wintermeyer, and M. van Heel. 1997. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature 389: 403–406.
- Willie, G. R., N. Richman, W. O. Godtfredsen, and J. W. Bodley. 1975. Some characteristics and structural requirements for the interaction of 24,25-dihydrofusidic acid with ribosome elongation factor G complexes. Biochemistry 14: 1713–1718.