Insights into the GTPase Mechanism of EF-Tu from Structural Studies
Rolf Hilgenfeld
Institute of Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
Search for more papers by this authorJeroen Mesters
Institute of Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
Search for more papers by this authorTanis Hogg
Institute of Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
Search for more papers by this authorRolf Hilgenfeld
Institute of Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
Search for more papers by this authorJeroen Mesters
Institute of Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
Search for more papers by this authorTanis Hogg
Institute of Molecular Biotechnology, Beutenbergstr. 11, D-07745 Jena, Germany
Search for more papers by this authorRoger A. Garrett
Search for more papers by this authorSummary
The main role of EF-Tu is clearly in the elongation phase of bacterial protein synthesis. The protein transports aminoacylated tRNA (aa-tRNA) molecules to the programmed ribosome and profoundly contributes to an accurate and fast translation of mRNAs into proteins. EF-Tu was the first protein found to be regulated by the binding and subsequent hydrolysis of GTP, making it a paradigm for the superfamily of regulatory GTPases. The rather loose structure of the GDP complex, originally seen with an EF-Tu that had been proteolytically cleaved at at least two sites, was later validated by X-ray analysis of crystals of intact EF-Tu·GDP. While the mechanism of the ribosome-mediated GTPase reaction of EF-Tu is thus entirely unclear, very little is known about the intrinsic GTP-hydrolyzing activity exhibited by the enzyme in the absence of the ribosome. In the amino acid sequence of EF-Tu, the conserved glutamine residue of Gα and Ras is replaced by His-85. The importance of the hydrophobic gate in protecting the nucleophilic water molecule from premature activation was tested by replacing the wing residues (V20S and I61A mutants). Both mutants do show a somewhat elevated intrinsic GTPase, but instead of His-85 swinging in to activate the nucleophilic water, the authors observe the rearrangement of a chain of water molecules extending from bulk solvent to the γ-phosphate.
References
- Abel, K., and F. Jurnak. 1996. A complex profile of protein elongation: translating chemical energy into molecular movement. Structure 4: 229–238.
- Abel, K., M. D. Yoder, R. Hilgenfeld, and F. Jurnak. 1996. An α to β conformational switch in EF-Tu. Structure 4: 1153–1159.
- Berchtold, H. , L. Reshetnikova , C. O. A. Reiser , N. K. Schirmer , M. Sprinzl , and R. Hilgenfeld. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365: 126–132.
- Caldas, T. D., A. E. Yaagoubi, and G. Richarme. 1998. Chaperone properties of bacterial elongation factor EF-Tu. J. Biol. Chem. 273: 11478–11482.
- Coleman, D. E., A. M. Berghuis, E. Lee, M. E. Linder, A. G. Gilman, and S. R. Sprang. 1994. Structures of active conformations of Gi α 1 and the mechanism of GTP hydrolysis. Science 265: 1405–1412.
- Fauman, E. B., C. Yuvaniyama, H. L. Schubert, J. A. Stuckey, and M. A. Saper. 1996. The X-ray structures of Yersinia tyrosine phosphatase with bound tungstate and nitrate. J. Biol. Chem. 271: 18780–18788.
- Georgiou, T., Y. N. Yu, S. Ekunwe, M. J. Buttner, A.-M. Zuurmond, B. Kraal, C. Kleanthous, and L. Snyder. 1998. Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu. Proc. Natl. Acad. Sci. USA 95: 2891–2895.
- Hilgenfeld, R. 1995a. Regulatory GTPases. Curr. Opin. Struct. Biol. 5: 810–817.
- Hilgenfeld, R. 1995b. How do the GTPases really work? Nat. Struct. Biol. 2:3-6.
- Kahn, R. A. 1991. Fluoride is not an activator of the smaller (20-25 kDa) GTP-binding proteins. J. Biol. Chem. 266: 15595–15597.
- Kawashima, T., C. Berthet-Colominas, M. Wulff, S. Cusack, and R. Leberman. 1996. The structure of the Escherichia coli EF-Tu:EF-Ts complex at 2.5Å resolution. Nature 379: 511–518.
- Kjeldgaard, M., and J. Nyborg. 1992. Refined structure of elongation factor Tu from Escherichia coli J. Mol. Biol. 223: 721–742.
- Kjeldgaard, M., P. Nissen, S. Thirup, and J. Nyborg. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1: 35–50.
- Knudsen, C. R., and B. F. Clark. 1995. Site-directed mutagenesis of Arg58 and Asp86 of elongation factor Tu from Escherichia coli : effects on the GTPase reaction and aminoacyl-tRNA binding. Protein Eng. 8: 1267–1273.
- Krab, I. M., and A. Parmeggiani. 1998. EF-Tu, a GTPase odyssey. Biochim. Biophys. Acta 1443: 1–22.
- Kudlicki, W., A. Coffman, G. Kramer, and B. Hardesty. 1997. Renaturation of rhodanese by translation elongation factor Tu. J. Biol. Chem. 272: 32206–32210.
- Lucas-Lenard, J., and F. Lipmann. 1971. Protein biosynthesis. Annu. Rev. Biochem. 40: 409–448.
- Maegley, K. A., S. J. Admiraal, and D. Herschlag. 1996. Rascatalyzed hydrolysis of GTP: a new perspective from model studies. Proc. Natl. Acad. Sci. USA 93: 8160–8166.
- Martemyanov, K., and A. Gudkov. Personal communication.
- Mesters, J. R., J. M. de Graaf, and B. Kraal. 1993. Divergent effects of fluoroaluminates on the peptide chain elongation factors EF-Tu and EF-G as members of the GTPase superfamily. FEBS Lett. 321: 149–152.
-
Mildvan, A. S.
1997. Mechanisms of signaling and related enzymes. Protein Struct. Funct. Genet. 29: 401–416.
10.1002/(SICI)1097-0134(199712)29:4<401::AID-PROT1>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- Pauling, L. 1960. The Nature of the Chemical Bond, 3rd ed., p. 255–260. Cornell University Press , Ithaca, N.Y.
- Polekhina, G., S. Thirup, M. Kjeldgaard, P. Nissen, C. Lippmann, and J. Nyborg. 1996. Helix unwinding in the effector region of elongation factor Tu•GDP. Structure 4: 1141–1151.
- Rittinger, K., P. A. Walker, J. F. Ecclestone, K. Nurmahomed, D. Own, E. Laue, S. J. Gamblin, and S. K. Smerdon. 1997a. Crystal structure of the complex between Cdc42Hs•GMPPNP and p50rhoGAP. Nature 388: 693–697.
- Rittinger, K., P. A. Walker, J. F. Ecclestone, S. K. Smerdon, and S. J. Gamblin. 1997b. Structure at 1.65 Å of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature 389: 758–762.
- Rütthard, H. 1999. Ph.D. thesis. University of Bayreuth, Beyreuth, Germany.
- Scarano, G., I. M. Krab, V. Bocchini, and A. Parmeggiani. 1995. Relevance of histidine-84 in the elongation factor Tu GTPase activity and in poly(Phe) synthesis: its substitution by glutamine and alanine. FEBS Lett. 365: 214–218.
- Scheffzek, K., M. R. Ahmadian, W. Kabsch, L. Wiesmüller, A. Lautwein, F. Schmitz, and A. Wittinghofer. 1997. The rasrasGAP complex: structural basis for GTPase activation and its loss in oncogenic ras mutants. Science 277: 333–338.
- Schütz, H., and R. Hilgenfeld. Unpublished data.
- Schweins, T., M. Geyer, K. Scheffzek, A. Warshel, H. R. Kalbitzer, and A. Wittinghofer. 1995. Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nat. Struct. Biol. 2: 36–44.
- Sondek, J., D. G. Lambright, J. P. Noel, H. E. Hamm, and P. B. Sigler. 1994. GTPase mechanism of G proteins from the 1.7Å crystal structure of transducin α-GDP-AlF4 . Nature 372: 276–279.
- Tesmer, J. J. G., D. M. Berman, A. G. Gilman, and S. R. Sprang. 1997. Structure of RGS4 bound to AlF4 −-activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell 89: 251–261.
- Vetter, I. R., C. Nowak, T. Nishimoto, J. Kuhlmann, and A. Wittinghofer. 1999. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398: 39–46.
- Wagner, A. 1996. Ph.D. thesis. University of Bayreuth, Bayreuth, Germany.
- Wang, Y., Y. Jiang, M. Meyering-Vos, M. Sprinzl, and P. B. Sigler. 1997. Crystal structure of the EF-Tu∗EF-Ts complex from Thermus thermophilus Nat. Struct. Biol. 4: 650–656.
- Zeidler, W., C. Egle, S. Ribeiro, A. Wagner, V. Katunin, R. Kreutzer, M. Rodnina, W. Wintermeyer, and M. Sprinzl. 1995. Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His 85, Asp 81 and Arg 300. Eur. J. Biochem. 229: 596–604.
- Zeidler, W., N. K. Schirmer, C. Egle, S. Ribeiro, R. Kreutzer, and M. Sprinzl. 1996. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu. Eur. J. Biochem. 239: 265–271.