Metabolic effects of milk fatty acids: A literature review
Karla Y. Muñoz-Alvarez
Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México ‘Federico Gómez’ (HIMFG), Mexico City, Mexico
Search for more papers by this authorRuth Gutiérrez-Aguilar
Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México ‘Federico Gómez’ (HIMFG), Mexico City, Mexico
División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
Search for more papers by this authorCorresponding Author
María E. Frigolet
Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México ‘Federico Gómez’ (HIMFG), Mexico City, Mexico
Correspondence
María E. Frigolet, Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México ‘Federico Gómez’, Dr. Márquez 162, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico.
Email: [email protected]
Search for more papers by this authorKarla Y. Muñoz-Alvarez
Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México ‘Federico Gómez’ (HIMFG), Mexico City, Mexico
Search for more papers by this authorRuth Gutiérrez-Aguilar
Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México ‘Federico Gómez’ (HIMFG), Mexico City, Mexico
División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
Search for more papers by this authorCorresponding Author
María E. Frigolet
Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México ‘Federico Gómez’ (HIMFG), Mexico City, Mexico
Correspondence
María E. Frigolet, Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México ‘Federico Gómez’, Dr. Márquez 162, Col. Doctores, Del. Cuauhtémoc, 06720, Mexico City, Mexico.
Email: [email protected]
Search for more papers by this authorAbstract
Milk and dairy products are known to have a significant role in human development and tissue maintenance due to their high nutritional value. With the higher incidence of obesity and metabolic diseases, nutrition and public health authorities have recommended the intake of fat-free or low-fat dairy due to the saturated fatty acid content of whole-fat products and their effect on serum cholesterol levels. However, recent studies have questioned the association between milk fat consumption and cardiometabolic risk. This literature review aims to compile the scientific evidence of the metabolic effects of milk fatty acids in clinical and basic research studies, as well as their relationship with metabolic disorders and gut microbiota composition. Research shows that various milk fatty acids exert effects on metabolic alterations (obesity, type 2 diabetes and cardiovascular diseases) by modifying glucose homeostasis, inflammation and lipid profile-related factors. Additionally, recent studies have associated the consumption of milk fatty acids with the production of metabolites and the promotion of healthy gut microbiota. From mainly observational studies, evidence suggests that milk and dairy fatty acids are not directly linked to cardiometabolic risk, but further controlled research is necessary to clarify such findings and to assess whether dietary recommendations to choose low-fat dairy foods are necessary for the population for the prevention of obesity and cardiometabolic disease.
CONFLICT OF INTEREST STATEMENT
The authors have no conflicts of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- Agus, A., Clément, K. & Sokol, H. (2021) Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut, 70(6), 1174–1182.
- Alvarez-Bueno, C., Cavero-Redondo, I., Martinez-Vizcaino, V., Sotos-Prieto, M., Ruiz, J.R. & Gil, A. (2019) Effects of Milk and dairy product consumption on type 2 diabetes: overview of systematic reviews and meta-analyses. Advances in Nutrition (Bethesda, Md.), 10(suppl_2), S154–S163.
- Ardisson Korat, A.V., Li, Y., Sacks, F., Rosner, B., Willett, W.C., Hu, F.B. et al. (2019) Dairy fat intake and risk of type 2 diabetes in 3 cohorts of US men and women. The American Journal of Clinical Nutrition, 110(5), 1192–1200.
- Artaud-Wild, S.M., Connor, S.L., Sexton, G. & Connor, W.E. (1993) Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. a paradox. Circulation, 88(6), 2771–2779.
- Azain, M.J., Hausman, D.B., Sisk, M.B., Flatt, W.P. & Jewell, D.E. (2000) Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. The Journal of Nutrition, 130(6), 1548–1554.
- Bellwood, P.S. (2005) First farmers: the origins of agricultural societies/Peter Bellwood. Malden: Blackwell.
- Bhavadharini, B., Dehghan, M., Mente, A., Rangarajan, S., Sheridan, P., Mohan, V. et al. (2020) Association of dairy consumption with metabolic syndrome, hypertension and diabetes in 147 812 individuals from 21 countries. BMJ Open Diabetes Research & Care, 8(1), e000826.
- Biong, A.S., Veierød, M.B., Ringstad, J., Thelle, D.S. & Pedersen, J.I. (2006) Intake of milk fat, reflected in adipose tissue fatty acids and risk of myocardial infarction: a case–control study. European Journal of Clinical Nutrition, 60(2), 236–244.
- Blüher, M. (2019) Obesity: global epidemiology and pathogenesis. Nature Reviews. Endocrinology, 15(5), 288–298.
- Bogatyrev, S.R., Rolando, J.C. & Ismagilov, R.F. (2020) Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine. Microbiome, 8(1), 1–22.
- Bohl, M., Bjørnshave, A., Larsen, M.K., Gregersen, S. & Hermansen, K. (2017) The effects of proteins and medium-chain fatty acids from milk on body composition, insulin sensitivity and blood pressure in abdominally obese adults. European Journal of Clinical Nutrition, 71(1), 76–82.
- Bohl, M., Bjørnshave, A., Rasmussen, K.V., Schioldan, A.G., Amer, B., Larsen, M.K. et al. (2015) Dairy proteins, dairy lipids, and postprandial lipemia in persons with abdominal obesity (DairyHealth): a 12-wk, randomized, parallel-controlled, double-blinded, diet intervention study. The American Journal of Clinical Nutrition, 101(4), 870–878.
- Cao, H., Gerhold, K., Mayers, J.R., Wiest, M.M., Watkins, S.M. & Hotamisligil, G.S. (2008) Identification of a Lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell, 134(6), 933–944.
- Chai, B.K., Al-Shagga, M., Pan, Y., Then, S.M., Ting, K.N., Loh, H.S. et al. (2019) Cis-9, Trans-11 conjugated linoleic acid reduces phosphoenolpyruvate Carboxykinase expression and hepatic glucose production in HepG2 cells. Lipids, 54(6–7), 369–379.
- Chaplin, A., Parra, P., Serra, F. & Palou, A. (2015) Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice. PLoS One, 10(4), e0125091.
- Chávaro-Ortiz, L.I., Tapia, B.D., Rico-Hidalgo, M., Gutiérrez-Aguilar, R. & Frigolet, M.E. (2021) Trans-palmitoleic acid reduces adiposity via increased lipolysis in a rodent model of diet-induced obesity. British Journal of Nutrition, 2021, 1–9.
- Chen, M., Sun, Q., Giovannucci, E., Mozaffarian, D., Manson, J.A.E., Willett, W.C. et al. (2014) Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Medicine, 12(1), 215.
- Chen, S.-C., Lin, Y.-H., Huang, H.-P., Hsu, W.-L., Houng, J.-Y. & Huang, C.-K. (2012) Effect of conjugated linoleic acid supplementation on weight loss and body fat composition in a Chinese population. Nutrition, 28(5), 559–565.
- Choi, Y., Kim, Y.C., Han, Y.B., Park, Y., Pariza, M.W. & Ntambi, J.M. (2000) The trans-10,cis-12 isomer of conjugated linoleic acid downregulates stearoyl-CoA desaturase 1 gene expression in 3T3-L1 adipocytes. The Journal of Nutrition, 130(8), 1920–1924.
- Cimen, I., Yildirim, Z., Dogan, A.E., Yildirim, A.D., Tufanli, O., Onat, U.I. et al. (2019) Double bond configuration of palmitoleate is critical for atheroprotection. Molecular Metabolism, 28, 58–72.
- Damodaran, S. & Parkin, K.L. (2017) Fennema's food chemistry, 5th editio edition. Boca Raton, FL, USA: CRC Press, Taylor & Francis Group.
- de Oliveira Otto, M.C., Lemaitre, R.N., Song, X., King, I.B., Siscovick, D.S. & Mozaffarian, D. (2018) Serial measures of circulating biomarkers of dairy fat and total and cause-specific mortality in older adults: the cardiovascular health study. The American Journal of Clinical Nutrition, 108(3), 476–484.
- de Oliveira Otto, M.C., Mozaffarian, D., Kromhout, D., Bertoni, A.G., Sibley, C.T., Jacobs, D.R. et al. (2012) Dietary intake of saturated fat by food source and incident cardiovascular disease: the multi-ethnic study of atherosclerosis. The American Journal of Clinical Nutrition, 96(2), 397–404.
- De Oliveira Otto, M.C., Nettleton, J.A., Lemaitre, R.N., Steffen, M.L., Kromhout, D., Rich, S.S. et al. (2013) Biomarkers of dairy fatty acids and risk of cardiovascular disease in the multi-ethnic study of atherosclerosis. Journal of the American Heart Association, 2(4), e000092.
- den Hartigh, L.J., Gao, Z., Goodspeed, L., Wang, S., Das, A.K., Burant, C.F. et al. (2018) Obese mice losing weight due to trans-10,cis-12 conjugated linoleic acid supplementation or food Restriction Harbor distinct gut microbiota. The Journal of Nutrition, 148(4), 562–572.
- Derakhshande-Rishehri, S.M., Mansourian, M., Kelishadi, R. & Heidari-Beni, M. (2015) Association of foods enriched in conjugated linoleic acid (CLA) and CLA supplements with lipid profile in human studies: a systematic review and meta-analysis. Public Health Nutrition, 18(11), 2041–2054.
- Devillard, E., Mcintosh, F.M., Duncan, S.H. & Wallace, R.J. (2007) Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. Journal of Bacteriology, 189(6), 2566–2570.
- Drehmer, M., Pereira, M.A., Schmidt, M.I., Molina, M.D.C.B., Alvim, S., Lotufo, P.A. et al. (2015) Associations of dairy intake with glycemia and insulinemia, independent of obesity, in Brazilian adults: the Brazilian longitudinal study of adult health (ELSA-Brasil). The American Journal of Clinical Nutrition, 101(4), 775–782.
- Drouin-Chartier, J.P., Côté, J.A., Labonté, M.É., Brassard, D., Tessier-Grenier, M., Desroches, S. et al. (2016) Comprehensive review of the impact of dairy foods and dairy fat on Cardiometabolic risk. Advances in Nutrition (Bethesda, Md.), 7(6), 1041–1051.
- Eftekhari, M.H., Aliasghari, F., Beigi, M.A.B. & Hasanzadeh, J. (2014) The effect of conjugated linoleic acids and omega-3 fatty acids supplementation on lipid profile in atherosclerosis. Advanced Biomedical Research, 3(1), 15.
- Elwood, P.C., Pickering, J.E., Ian Givens, D. & Gallacher, J.E. (2010) The consumption of milk and dairy foods and the incidence of vascular disease and diabetes: an overview of the evidence. Lipids, 45(10), 925–939.
- Esmaeili Shahmirzadi, F., Ghavamzadeh, S. & Zamani, T. (2019) The effect of conjugated linoleic acid supplementation on body composition, serum insulin and leptin in obese adults. Archives of Iranian Medicine, 22(5), 255–261.
- Fang, W., Xue, H., Chen, X., Chen, K. & Ling, W. (2019) Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice. The Journal of Nutrition, 149(5), 747–754.
- FAO. (2021) Food-based dietary guidelines. [online]. Available from: https://www.fao.org/nutrition/education/food-dietary-guidelines/regions/en/ Accessed 19 January 2022.
- Fong, B.Y., Norris, C.S. & MacGibbon, A.K.H. (2007) Protein and lipid composition of bovine milk-fat-globule membrane. International Dairy Journal, 17(4), 275–288.
- Fox, P.F. & McSweeney, P.L.H. (2006) Advanced dairy chemistry, 3rd edition. New York, NY, USA: Springer.
- Fox, P.F., Uniacke-Lowe, T., McSweeney, P.L.H. & O'Mahony, J.A. (2015) Dairy chemistry and biochemistry, 2nd edition. Cham, Switzerland: Springer International Publishing: Imprint: Springer.
10.1007/978-3-319-14892-2 Google Scholar
- Fu, W.C., Li, H.Y., Li, T.T., Yang, K., Chen, J.X., Wang, S.J. et al. (2021) Pentadecanoic acid promotes basal and insulin-stimulated glucose uptake in C2C12 myotubes. Food & Nutrition Research, 65. Available from: https://doi.org/10.29219/fnr.v65.4527
- Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M. et al. (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes, 58(7), 1509–1517.
- Garibay-Nieto, N., Queipo-García, G., Alvarez, F., Bustos, M., Villanueva, E., Ramírez, F. et al. (2017) Effects of conjugated linoleic acid and metformin on insulin sensitivity in obese children: randomized clinical trial. The Journal of Clinical Endocrinology & Metabolism, 102(1), 132–140.
- Givens, D.I. (2022) Saturated fats, dairy foods and cardiovascular health: no longer a curious paradox? Nutrition Bulletin, 47(4), 407–422.
- Gómez-Cortés, P., Juárez, M. & de La Fuente, M.A. (2018) Milk fatty acids and potential health benefits: an updated vision. Trends in Food Science & Technology, 81, 1–9.
- Gong, H., Yuan, Q., Pang, J., Li, T., Li, J., Zhan, B. et al. (2020) Dietary Milk fat globule membrane restores decreased intestinal mucosal barrier development and alterations of intestinal Flora in infant-formula-fed rat pups. Molecular Nutrition & Food Research, 64(21), 2000232.
- Gorissen, L., Raes, K., Weckx, S., Dannenberger, D., Leroy, F., de Vuyst, L. et al. (2010) Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Applied Microbiology and Biotechnology, 87(6), 2257–2266.
- Guillocheau, E., Penhoat, C., Drouin, G., Godet, A., Catheline, D., Legrand, P. et al. (2020) Current intakes of trans-palmitoleic (trans-C16:1 n-7) and trans-vaccenic (trans-C18:1 n-7) acids in France are exclusively ensured by ruminant milk and ruminant meat: a market basket investigation. Food Chemistry: X, 5, 100081.
- Hamilton, M., Hopkins, L.E., Alzahal, O., Macdonald, T.L., Cervone, D.T., Wright, D.C. et al. (2015) Feeding butter with elevated content of trans-10, cis-12 conjugated linoleic acid to obese-prone rats impairs glucose and insulin tolerance. Lipids in Health and Disease, 14(1), 119.
- Heart Foundation. (2019) Heart healthy eating patterns: nutrition position statements. Australia: NHFA. [online]. Available from: https://www.heartfoundation.org.au/bundles/for-professionals/nutrition-position-statements Accessed 04 December 2023.
- Huth, P.J. & Park, K.M. (2012) Influence of dairy product and milk fat consumption on cardiovascular disease risk: a review of the evidence. Advances in Nutrition, 3(3), 266–285.
- Iggman, D., Ärnlöv, J., Vessby, B., Cederholm, T., Sjögren, P. & Risérus, U. (2010) Adipose tissue fatty acids and insulin sensitivity in elderly men. Diabetologia, 53(5), 850–857.
- Imamura, F., Fretts, A., Marklund, M., Ardisson Korat, A.V., Yang, W.-S., Lankinen, M. et al. (2018) Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLoS Medicine, 15(10), e1002670.
- Ireland, H.S.E. (2021) Healthy Food for Life Guidelines. [online]. Available from: http://www.hse.ie/eng/about/Who/healthwellbeing/Our-Priority-Programmes/HEAL/Healthy-Eating-Guidelines Accessed 19 February 2022.
- Jacome-Sosa, M.M., Borthwick, F., Mangat, R., Uwiera, R., Reaney, M.J., Shen, J. et al. (2014) Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome. The Journal of Nutritional Biochemistry, 25(7), 692–701.
- Juan, R.-D., Nancy, L.-O., Tania, A.-S., Lilia, P.-Z. & Tania, S.-P. (2014) Consumo de productos lácteos en la población mexicana. In: J. Rivera Dommarco (Ed.) Resultados de la Encuesta Nacional de Salud y Nutrición 2012. Mexico: Instituto Nacional de Salud Pública.
- Kang, K., Liu, W., Albright, K.J., Park, Y. & Pariza, M.W. (2003) Trans-10,cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPARγ expression. Biochemical and Biophysical Research Communications, 303(3), 795–799.
- Khan, I.T., Nadeem, M., Imran, M. & Khalique, A. (2020) Impact of post fermentation cooling patterns on fatty acid profile, lipid oxidation and antioxidant features of cow and buffalo milk set yoghurt. Lipids in Health and Disease, 19(1), 74.
- Kratz, M., Marcovina, S., Nelson, J.E., Yeh, M.M., Kowdley, K.V., Callahan, H.S. et al. (2014) Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not β-cell function in humans. The American Journal of Clinical Nutrition, 99(6), 1385–1396.
- Kummer, K., Jensen, P.N., Kratz, M., Lemaitre, R.N., Howard, B.V., Cole, S.A. et al. (2019) Full-fat dairy food intake is associated with a lower risk of incident diabetes among American Indians with low Total dairy food intake. The Journal of Nutrition, 149(7), 1238–1244.
- Larsen, T.M., Toubro, S. & Astrup, A. (2003) Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studies. Journal of Lipid Research, 44(12), 2234–2241.
- Laso, N., Brugué, E., Vidal, J., Ros, E., Arnaiz, J.A., Carné, X. et al. (2007) Effects of milk supplementation with conjugated linoleic acid (isomers cis-9, trans-11 and trans-10, cis-12) on body composition and metabolic syndrome components. British Journal of Nutrition, 98(4), 860–867.
- Laursen, A.S.D., Dahm, C.C., Johnsen, S.P., Schmidt, E.B., Overvad, K. & Jakobsen, M.U. (2019) Adipose tissue fatty acids present in dairy fat and risk of stroke: the Danish diet, cancer and health cohort. European Journal of Nutrition, 58(2), 529–539.
- Lee, K.N., Pariza, M.W. & Ntambi, J.M. (1998) Conjugated linoleic acid decreases hepatic stearoyl-CoA desaturase mRNA expression. Biochemical and Biophysical Research Communications, 248(3), 817–821.
- Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D. & Gordon, J.I. (2005) Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences, 102(31), 11070–11075.
- Li, H.P., Chen, X. & Li, M.Q. (2013) Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity. International Journal of Clinical and Experimental Pathology, 6(8), 1574–1584.
- Li, X., Yin, J., Zhu, Y., Wang, X., Hu, X., Bao, W. et al. (2018) Effects of whole Milk supplementation on gut microbiota and Cardiometabolic biomarkers in subjects with and without lactose malabsorption. Nutrients, 10(10), 1403.
- Lu, Y., Fan, C., Li, P., Lu, Y., Chang, X. & Qi, K. (2016) Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Scientific Reports, 6(1), 37589.
- Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S. et al. (2015) Biological and nutritional properties of palm oil and palmitic acid: effects on health. Molecules (Basel, Switzerland), 20(9), 17339–17361.
- Manuelian, C.L., Penasa, M., Visentin, G., Zidi, A., Cassandro, M. & De Marchi, M. (2018) Mineral composition of cow milk from multibreed herds. Animal Science Journal, 89(11), 1622–1627.
- Markey, O., Vasilopoulou, D., Kliem, K.E., Fagan, C.C., Grandison, A.S., Sutton, R. et al. (2021) Postprandial fatty acid profile, but not Cardiometabolic risk markers, is modulated by dairy fat manipulation in adults with moderate cardiovascular disease risk: the randomized controlled replacement of saturated fat in dairy on Total cholesterol (RESET) study. The Journal of Nutrition, 151(7), 1755–1768.
- Marques, T.M., Wall, R., O'Sullivan, O., Fitzgerald, G.F., Shanahan, F., Quigley, E.M. et al. (2015) Dietary trans-10, cis-12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice. British Journal of Nutrition, 113(5), 728–738.
- Matualatupauw, J.C., Bohl, M., Gregersen, S., Hermansen, K. & Afman, L.A. (2017) Dietary medium-chain saturated fatty acids induce gene expression of energy metabolism-related pathways in adipose tissue of abdominally obese subjects. International Journal of Obesity: Journal of the International Association for the Study of Obesity, 41, 1348–1354.
- Mayengbam, S., Mickiewicz, B., Trottier, S.K., Mu, C., Wright, D.C., Reimer, R.A. et al. (2019) Distinct gut microbiota and serum metabolites in response to weight loss induced by either dairy or exercise in a rodent model of obesity. Journal of Proteome Research, 18(11), 3867–3875.
- McGinnis, J.M. & Nestle, M. (1989) The surgeon General's report on nutrition and health: policy implications and implementation strategies. The American Journal of Clinical Nutrition, 49(1), 23–28.
- Miyamoto, J., Igarashi, M., Watanabe, K., Karaki, S.-I., Mukouyama, H., Kishino, S. et al. (2019) Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nature Communications, 10(1), 4007.
- Miyamoto, J., Mizukure, T., Park, S.-B., Kishino, S., Kimura, I., Hirano, K. et al. (2015) A gut microbial metabolite of linoleic acid, 10-Hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. Journal of Biological Chemistry, 290(5), 2902–2918.
- Moate, P.J., Chalupa, W., Boston, R.C. & Lean, I.J. (2007) Milk fatty acids. I. Variation in the concentration of individual fatty acids in bovine Milk. Journal of Dairy Science, 90(10), 4730–4739.
- Mollica, M.P., Mattace Raso, G., Cavaliere, G., Trinchese, G., de Filippo, C., Aceto, S. et al. (2017) Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes, 66(5), 1405–1418.
- Mollica, M.P., Trinchese, G., Cimmino, F., Penna, E., Cavaliere, G., Tudisco, R. et al. (2021) Milk fatty acid profiles in different animal species: focus on the potential effect of selected PUFAs on metabolism and brain functions. Nutrients, 13(4), 1111.
- Mozaffarian, D. (2006) Trans fatty acids – effects on systemic inflammation and endothelial function. Atherosclerosis Supplements, 7(2), 29–32.
- Mozaffarian, D. (2019) Dairy foods, obesity, and metabolic health: the role of the food matrix compared with single nutrients. Advances in Nutrition, 10(5), 917S–923S.
- Mozaffarian, D., Cao, H., King, I.B., Lemaitre, R.N., Song, X., Siscovick, D.S. et al. (2010a) Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. The American Journal of Clinical Nutrition, 92(6), 1350–1358.
- Mozaffarian, D., Cao, H., King, I.B., Lemaitre, R.N., Song, X., Siscovick, D.S. et al. (2010b) Trans-palmitoleic acid, metabolic risk factors, and new-onset diabetes in U.S. adults: a cohort study. Annals of Internal Medicine, 153(12), 790–799.
- Mozaffarian, D., de Oliveira Otto, M.C., Lemaitre, R.N., Fretts, A.M., Hotamisligil, G., Tsai, M.Y. et al. (2013) Trans-Palmitoleic acid, other dairy fat biomarkers, and incident diabetes: the multi-ethnic study of atherosclerosis (MESA). The American Journal of Clinical Nutrition, 97(4), 854–861.
- Nanthirudjanar, T., Furumoto, H., Zheng, J., Kim, Y.-I., Goto, T., Takahashi, N. et al. (2015) Gut microbial fatty acid metabolites reduce triacylglycerol levels in hepatocytes. Lipids, 50(11), 1093–1102.
- NHS. (2018) Cardiovascular disease. [online]. Available from: https://www.nhs.uk/conditions/cardiovascular-disease/ Accessed 9 November 2021.
- Olvera-Lopez, E., Ballard, B.D. & Jan, A. (2021) Cardiovascular disease. Treasure Island (FL): StatPearls Publishing.
- Ortega, R.M., Jiménez Ortega, A.I., Perea Sánchez, J.M., Cuadrado Soto, E., Aparicio Vizuete, A. & López-Sobaler, A.M. (2019) Nutritional value of dairy products and recommended daily consumption. Nutrición Hospitalaria, 36(Spec No3), 25–29.
- Penedo, L.A., Nunes, J.C., Gama, M.A., Leite, P.E., Quirico-Santos, T.F. & Torres, A.G. (2013) Intake of butter naturally enriched with cis9, trans11 conjugated linoleic acid reduces systemic inflammatory mediators in healthy young adults. The Journal of Nutritional Biochemistry, 24(12), 2144–2151.
- Polan, C.E., Mcneill, J.J. & Tove, S.B. (1964) Biohydrogenation of unsaturated fatty acids by rumen bacteria. Journal of Bacteriology, 88(4), 1056–1064.
- Poppitt, S.D. (2020) Cow's Milk and dairy consumption: is there now consensus for Cardiometabolic health? Frontiers in Nutrition, 7(277), 574725.
- Poppitt, S.D., Keogh, G.F., Mulvey, T.B., Phillips, A., McArdle, B.H., MacGibbon, A.K.H. et al. (2004) Effect of moderate changes in dietary fatty acid profile on postprandial lipaemia, haemostatic and related CVD risk factors in healthy men. European Journal of Clinical Nutrition, 58(5), 819–827.
- Poppitt, S.D., Koegh, G.F., Mulvey, T.B., McArdle, B.H., MacGibbon, A.K.H. & Cooper, G.J.S. (2002) Lipid-lowering effects of a modified butter-fat: a controlled intervention trial in healthy men. European Journal of Clinical Nutrition, 56(1), 64–71.
- Racine, N.M., Watras, A.C., Carrel, A.L., Allen, D.B., Mcvean, J.J., Clark, R.R. et al. (2010) Effect of conjugated linoleic acid on body fat accretion in overweight or obese children. The American Journal of Clinical Nutrition, 91(5), 1157–1164.
- Raff, M., Tholstrup, T., Basu, S., Nonboe, P., Sørensen, M.T. & Straarup, E.M. (2008) A diet rich in conjugated linoleic acid and butter increases lipid peroxidation but does not affect atherosclerotic, inflammatory, or diabetic risk markers in healthy young men. The Journal of Nutrition, 138(3), 509–514.
- Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G., Gasbarrini, A. et al. (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms, 7(1), 14.
- Risérus, U., Arner, P., Brismar, K. & Vessby, B. (2002) Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care, 25(9), 1516–1521.
- Risérus, U. & Marklund, M. (2017) Milk fat biomarkers and cardiometabolic disease. Current Opinion in Lipidology, 28(1), 46–51.
- Risérus, U., Vessby, B., Arner, P. & Zethelius, B. (2004) Supplementation with trans10cis12-conjugated linoleic acid induces hyperproinsulinaemia in obese men: close association with impaired insulin sensitivity. Diabetologia, 47(6), 1016–1019.
- Risérus, U., Vessby, B., Ärnlöv, J. & Basu, S. (2004) Effects of cis-9, trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. The American Journal of Clinical Nutrition, 80(2), 279–283.
- Rosell, M., Johansson, G., Berglund, L., Vessby, B., de Faire, U. & Hellénius, M.-L. (2004) Associations between the intake of dairy fat and calcium and abdominal obesity. International Journal of Obesity, 28(11), 1427–1434.
- Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N. et al. (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843.
- Santaren, I.D., Watkins, S.M., Liese, A.D., Wagenknecht, L.E., Rewers, M.J., Haffner, S.M. et al. (2014) Serum pentadecanoic acid (15:0), a short-term marker of dairy food intake, is inversely associated with incident type 2 diabetes and its underlying disorders. The American Journal of Clinical Nutrition, 100(6), 1532–1540.
- Santos, N.W., Yoshimura, E.H., Mareze-Costa, C.E., Machado, E., Agustinho, B.C., Pereira, L.M. et al. (2017) Supplementation of cow milk naturally enriched in polyunsaturated fatty acids and polyphenols to growing rats. PLoS One, 12(3), e0172909.
- Schrezenmeir, J. & Jagla, A. (2000) Milk and diabetes. Journal of the American College of Nutrition, 19(2 Suppl), 176S–190S.
- Serafeimidou, A., Zlatanos, S., Kritikos, G. & Tourianis, A. (2013) Change of fatty acid profile, including conjugated linoleic acid (CLA) content, during refrigerated storage of yogurt made of cow and sheep milk. Journal of Food Composition and Analysis, 31(1), 24–30.
- Sluijs, I., Plantinga, Y., De Roos, B., Mennen, L.I. & Bots, M.L. (2010) Dietary supplementation with cis-9,trans-11 conjugated linoleic acid and aortic stiffness in overweight and obese adults. The American Journal of Clinical Nutrition, 91(1), 175–183.
- Smit, L.A., Baylin, A. & Campos, H. (2010) Conjugated linoleic acid in adipose tissue and risk of myocardial infarction. The American Journal of Clinical Nutrition, 92(1), 34–40.
- Smith, S.B., Hively, T.S., Cortese, G.M., Han, J.J., Chung, K.Y., Casteñada, P. et al. (2002) Conjugated linoleic acid depresses the Δ9 desaturase index and stearoyl coenzyme a desaturase enzyme activity in porcine subcutaneous adipose tissue. Journal of Animal Science, 80(8), 2110–2115.
- Sofyana, N.T., Zheng, J., Manabe, Y., Yamamoto, Y., Kishino, S., Ogawa, J. et al. (2020) Gut microbial fatty acid metabolites (KetoA and KetoC) affect the progression of nonalcoholic steatohepatitis and reverse cholesterol transport metabolism in mouse model. Lipids, 55(2), 151–162.
- Soumaya, K. (2013) Molecular mechanisms of insulin resistance in diabetes. In: Advances in experimental medicine and biology. New York: Springer, pp. 240–251.
- Takato, T., Iwata, K., Murakami, C., Wada, Y. & Sakane, F. (2017) Chronic administration of myristic acid improves hyperglycaemia in the Nagoya–Shibata–Yasuda mouse model of congenital type 2 diabetes. Diabetologia, 60(10), 2076–2083.
- Thorning, T.K., Bertram, H.C., Bonjour, J.-P., de Groot, L., Dupont, D., Feeney, E. et al. (2017) Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. The American Journal of Clinical Nutrition, 105(5), 1033–1045.
- Tong, X., Dong, J.Y., Wu, Z.W., Li, W. & Qin, L.Q. (2011) Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies. European Journal of Clinical Nutrition, 65(9), 1027–1031.
- Tricon, S., Burdge, G.C., Jones, E.L., Russell, J.J., El-Khazen, S., Moretti, E. et al. (2006) Effects of dairy products naturally enriched with cis-9,trans-11 conjugated linoleic acid on the blood lipid profile in healthy middle-aged men. The American Journal of Clinical Nutrition, 83(4), 744–753.
- Tricon, S., Burdge, G.C., Kew, S., Banerjee, T., Russell, J.J., Jones, E.L. et al. (2004) Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. The American Journal of Clinical Nutrition, 80(3), 614–620.
- Turpeinen, O. (1979) Effect of cholesterol-lowering diet on mortality from coronary heart disease and other causes. Circulation, 59(1), 1–7.
- U.S., U.S.D. of H. and H.S. (2017) Dietary Guidelines for Americans 2015–2020. [online]. Available from: https://health.gov/our-work/nutrition-physical-activity/dietary-guidelines/previous-dietary-guidelines/2015 Accessed 9 November 2021.
- Valeille, K., Férézou, J., Parquet, M., Amsler, G., Gripois, D., Quignard-Boulangé, A. et al. (2006) The natural concentration of the conjugated linoleic acid, cis-9,trans-11, in Milk fat has Antiatherogenic effects in Hyperlipidemic hamsters. The Journal of Nutrition, 136(5), 1305–1310.
- van Nieuwenhove, C.P., Oliszewski, R. & González, S.N. (2009) Fatty acid composition and conjugated linoleic acid content of cow and goat cheeses from Northwest Argentina. Journal of Food Quality, 32(3), 303–314.
- Vasilopoulou, D., Markey, O., Kliem, K.E., Fagan, C.C., Grandison, A.S., Humphries, D.J. et al. (2020) Reformulation initiative for partial replacement of saturated with unsaturated fats in dairy foods attenuates the increase in LDL cholesterol and improves flow-mediated dilatation compared with conventional dairy: the randomized, controlled REplacement of SaturatEd fat in dairy on Total cholesterol (RESET) study. The American journal of clinical nutrition, 111(4), 739–748.
- Venkatramanan, S., Joseph, S.V., Chouinard, P.Y., Jacques, H., Farnworth, E.R. & Jones, P.J. (2010) Milk enriched with conjugated linoleic acid fails to alter blood lipids or body composition in moderately overweight, borderline hyperlipidemic individuals. Journal of the American College of Nutrition, 29(2), 152–159.
- Walstra, P., Wouters, J.T.M. & Geurts, T.J. (2005) Dairy science and technology. In: 92, Leerstoelgroep Productontwerpen en kwaliteitskunde 1812, 2nd edition. VLAG: CRC.
10.1201/9781420028010 Google Scholar
- Weaver, C.M. (2014) How sound is the science behind the dietary recommendations for dairy? The American Journal of Clinical Nutrition, 99(5), 1217S–1222S.
- WHO. (2021a) Cardiovascular diseases (CVDs). [online]. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds Accessed 9 November 2021.
- WHO. (2021b) Obesity and overweight. [online]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight Accessed 3 October 2021.
- Willett, W. & Mozaffarian, D. (2008) Ruminant or industrial sources of trans fatty acids: public health issue or food label skirmish? The American Journal of Clinical Nutrition, 87(3), 515–516.
- Xu, L., Wang, W., Zhang, X., Ke, H., Qin, Y., You, L. et al. (2019) Palmitic acid causes insulin resistance in granulosa cells via activation of JNK. Journal of Molecular Endocrinology, 62(4), 197–206.
- Yang, Z.-H., Miyahara, H. & Hatanaka, A. (2011) Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-ay mice with genetic type 2 diabetes. Lipids in Health and Disease, 10(1), 120.
- Yeganeh, A., Zahradka, P. & Taylor, C.G. (2017) Trans −10, cis −12 conjugated linoleic acid ( t10- c12 CLA) treatment and caloric restriction differentially affect adipocyte cell turnover in obese and lean mice. The Journal of Nutritional Biochemistry, 49, 123–132.
- Yu, D.X., Sun, Q., Ye, X.W., Pan, A., Zong, G., Zhou, Y.H. et al. (2012) Erythrocyte trans-fatty acids, type 2 diabetes and cardiovascular risk factors in middle-aged and older Chinese individuals. Diabetologia, 55(11), 2954–2962.
- Yu, E. & Hu, F.B. (2018) Dairy products, dairy fatty acids, and the prevention of Cardiometabolic disease: a review of recent evidence. Current Atherosclerosis Reports, 20(5), 24.
- Zhao, J., Yi, W., Liu, B., Dai, Y., Jiang, T., Chen, S. et al. (2022) MFGM components promote gut Bifidobacterium growth in infant and in vitro. European Journal of Nutrition, 61(1), 277–288.
- Zhou, D., Pan, Q., Xin, F.-Z., Zhang, R.-N., He, C.-X., Chen, G.-Y. et al. (2017) Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World Journal of Gastroenterology, 23(1), 60.