Effect of subcritical water processing on the extraction of compounds, composition, and functional properties of asparagus by-product
Isabela J. Iwassa
Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
Search for more papers by this authorMarcos A. dos Santos Ribeiro
Departamento de Biotecnologia Ambiental, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
Search for more papers by this authorEduardo C. Meurer
Universidade Federal do Paraná – Campus Avançado Jandaia do Sul, Jandaia do Sul, Paraná, Brazil
Search for more papers by this authorLúcio Cardozo-Filho
Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
Search for more papers by this authorBeatriz C. Bolanho
Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, Paraná, Brazil
Search for more papers by this authorCorresponding Author
Camila da Silva
Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, Paraná, Brazil
Correspondence
Camila da Silva, Departamento de Engenharia Química, Universidade Estadual de Maringá, 87020-900 Maringá, Paraná, Brazil.
Email: [email protected]
Search for more papers by this authorIsabela J. Iwassa
Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
Search for more papers by this authorMarcos A. dos Santos Ribeiro
Departamento de Biotecnologia Ambiental, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
Search for more papers by this authorEduardo C. Meurer
Universidade Federal do Paraná – Campus Avançado Jandaia do Sul, Jandaia do Sul, Paraná, Brazil
Search for more papers by this authorLúcio Cardozo-Filho
Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
Search for more papers by this authorBeatriz C. Bolanho
Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, Paraná, Brazil
Search for more papers by this authorCorresponding Author
Camila da Silva
Departamento de Engenharia Química, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, Paraná, Brazil
Correspondence
Camila da Silva, Departamento de Engenharia Química, Universidade Estadual de Maringá, 87020-900 Maringá, Paraná, Brazil.
Email: [email protected]
Search for more papers by this authorFunding information: CNPq
Abstract
The aim of this study was to submit the asparagus by-product to the subcritical water treatment, evaluating the extraction of antioxidants compounds (AC) and total reducing sugars (TRS), as well as, the composition and technological properties of the residual material. The effects of temperature (100–160 °C) and pressure (100–200 bar) on extraction were evaluated, for total extraction time of 120 min. The results showed that the increase in temperature favored the removal of AC and this variable did not cause modification of most of the compounds identified by mass spectra analysis. The highest removal of AC was observed up to 30 min. The increase in temperature decreased the TRS content. The pressure did not affect the extraction of sugars and AC in the conditions evaluated. The treatment was efficient for the modification of the physico-chemical composition and technological properties of residual material, reducing the TRS content and improving the ratio of soluble fiber to insoluble fiber.
Practical applications
Asparagus by-product can be an interesting source of nutrients, like dietary fiber and antioxidant compounds. To maximize the antioxidant yield obtained from this by-product, it can be used the subcritical water extraction (SWE) that is considered a green solvent. Besides this, the SWE promotes the concentration of dietary fibers of the treated material, due to the sugars removal, and improves the functional properties, which can facilitate the utilization of this material in the development of new food products.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest regarding the publication of this article.
REFERENCES
- Ahmadian-Kouchaksaraie, Z., Niazmand, R., & Najafi, M. N. (2016). Optimization of the subcritical water extraction of phenolic antioxidants from Crocus sativus petals of saffron industry residues: Box-Behnken design and principal component analysis. Innovative Food Science & Emerging Technologies, 36, 234–244.
- Aliakbarian, B., Fathi, A., Perego, P., & Dehghani, F. (2012). Extraction of antioxidants from winery wastes using subcritical water. The Journal of Supercritical Fluids, 65, 18–24.
- Antal, M. J., Jr., Mok, W. S. L., & Richards, G. N. (1990). Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydrate Research, 199(1), 91–109.
- Augusto, T. R., Salinas, E. S. S., Alencar, S. M., D'arce, M. A. B., Camargo, A. C., & Vieira, T. M. F. S. (2014). Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food Science and Technology, 34(4), 667–679.
- Ayala-Zavala, J. F., Rosas-Domínguez, C., Vega-Veja, V., & González-Aguilar, G. A. (2010). Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own by-products: Looking for integral exploitation. Journal of Food Science, 75(8), 175–181.
- Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76.
- Brand-Wiliams, W., Cuvelier, M. E., & Berset, C. (1955). Use of a free radical method to evaluate antioxidant activity. LWT—Food Science and Technology, 28(1), 25–30.
10.1016/S0023-6438(95)80008-5 Google Scholar
- Brunner, G. (2009). Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. The Journal of Supercritical Fluids, 47(3), 373–381.
- Cadavid, E. L. A., Molina, D. A. R., & Valenzuela, J. R. C. (2015). Chemical, physicochemical and functional characteristics of dietary fiber obtained from asparagus by-products (Asparagus officinalis L.). Revista Facultad Nacional de Agronomía Medellín, 68(1), 7533–7544.
10.15446/rfnam.v68n1.47842 Google Scholar
- Carr, A. G., Mammucari, R., & Foster, N. R. (2011). A review of subcritical water as a solvente and its utilisation for the processing of hydrophobic organic compounds. Chemical Engineering Journal, 172(1), 1–17.
- Chandi, G. K., & Sogi, D. S. (2007). Function properties of rice bran protein concentrates. Journal of Food Engineering, 79(2), 592–597.
- Delcambre, A., & Saucier, C. (2013). High-throughput OEnomics: Shotgun polyphenomics of wines. Analytical Chemistry, 85, 9736–9741.
- Duba, K. S., Casazza, A. A., Mohamed, H. B., Perego, P., & Fiori, L. (2015). Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: Experiments and modeling. Food and Bioproducts Processing, 94, 29–38.
- Eim, V. S., Simal, S., Rosselló, C., & Femenia, A. (2008). Effects of addition of carrot dietary fibre on the ripening process of a dry fermented sausage (Sobressada). Meat Science, 80(2), 173–182.
- Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterization, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411–421.
- Fan, R., Yuan, F., Wang, N., Gao, Y., & Huang, Y. (2015). Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L. Journal of Food Science and Technology, 52(5), 2690–2700.
- Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potencial fibres sources for food enrichment. Food Chemistry, 91(3), 395–401.
- Fuentes-Alventosa, J. M., Jaramillo-Carmona, S., Rodríguez-Gutiérrez, G., Guillén-Bejarano, R., Jiménez-Araujo, A., Fernández-Bolaños, J., & Rodríguez-Arcos, R. (2013). Preparation of bioactive extracts from asparagus by-product. Food and Bioproducts Processing, 91(2), 74–82.
- Fuentes-Alventosa, J. M., Rodríguez-Gutiérrez, G., Jaramillo-Carmona, S., Espejo-Calvo, J. A., Rodríguez-Arcos, R., Fernández-Bolaños, J., … Jiménez-Araujo, A. (2009). Effect of extraction method on chemical composition and functional characteristics of high dietary fibre powders obtained from asparagus by-products. Food Chemistry, 113(2), 665–671.
- Gramza-Michałowska, A., Kobus-Cisowska, J., Kmiecik, D., Korczak, J., Helak, B., Dziedzic, K., & Górecka, D. (2016). Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chemistry, 211, 448–454.
- He, L., Zhang, X., Xu, Z., Xu, C., Yuan, F., Knez, Z., … Gao, Y. (2012). Subcritical water extraction of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant activities with HPLC-ABTS+ assay. Food and Bioproducts Processing, 90(2), 215–223.
- Herrero, M., Cifuentes, A., & Ibañez, E. (2006). Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chemistry, 98(1), 136–148.
- Horwitz, W., & Latimer, G. (2005). Official methods of analysis of AOAC International ( 18th ed.). Gaithersburg, Estados Unidos: AOAC International.
- Hung, P. V., Maeda, T., Miyatake, K., & Morita, N. (2009). Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Food Research International, 42(1), 185–190.
- Ibañez, E., Herrero, M., Mendiola, J. A., & Castro-Puyana, M. (2012). Extraction and characterization of bioactive compounds with health benefits from marine resources: Macro and micro algae, cyanobacteria, and invertebrates. In M. Hayes (Ed.), Marine bioactive compounds (pp. 55–98). Boston: Springer.
10.1007/978-1-4614-1247-2_2 Google Scholar
- Iwassa, I. (2015). Asparagus by-products flours: Microstructure, composition, functional and antioxidant properties. Umuarama: State University of Maringá.
- Jaime, L., Mollá, E., Fernández, A., Martín-Cabrejas, M. A., López-Andréu, F. J., & Esteban, R. M. (2002). Structural carbohydrate differences and potential source of dietary fiber of onion (Allium cepa L.) tissues. Journal of Agricultural and Food Chemistry, 50(1), 122–128.
- Jiménez-Sánchez, C., Lozano-Sánchez, J., Rodríguez-Pérez, C., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2016). Comprehensive, untargeted, and qualitative RP-HPLC-ESI-QTOF/MS2 metabolite profiling of green asparagus (Asparagus officinalis). Journal of Food Composition and Analysis, 46, 78–87.
- Jitngarmkusol, S., Hongsuwankul, J., & Tananuwong, K. (2008). Chemical compositions, functional properties, and microstructure of defatted macadamia flours. Food Chemistry, 110(1), 23–30.
- Khajavi, S. H., Kimura, Y., Oomori, T., Matsuno, R., & Adachi, S. (2005). Degration kinetics of monosaccharides in subcritical water. Journal of Food Engineering, 68(3), 309–313.
- Lecumberri, E., Mateos, R., Izquierdo-Pulido, M., Rupérez, P., Goya, L., & Bravo, L. (2007). Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry, 104(3), 948–954.
- Lee, J. W., Lee, J. H., Yu, I. H., Gorinstein, S., Bae, J. H., & Ku, Y. G. (2014). Bioactive compounds, antioxidant and binding activities and spear yield of Asparagus officinalis L. Plant Foods Human Nutrition, 69(2), 175–181.
- Llanos, G. A. H., Yañez, M. M. O., Llanos, C. A. H., Gómez, Z. A., & Acosta, L. M. V. (2010). Efecto de la temperature de secado sobre las propiedades funcionales de la fibra dietaria presente en la citropulpa. Revista Lasallista de Investigación, 7(2), 85–93.
- Llobera, A., & Cañellas, J. (2007). Dietary fibre content and antioxidant activity of Manto negro red grape (Vitis vinifera): Pomace and stem. Food Chemistry, 101(2), 659–666.
- López, G., Ros, G., Rincón, F., Periago, M. J., Martínez, M. C., & Ortuño, J. (1996). Relationship between physical and hydration properties of soluble and insoluble fiber of artichoke. Journal of Agricultural and Food Chemistry, 44(9), 2773–2778.
- Lu, W., Chen, X., Wang, J., Yang, X., & Qi, J. (2016). Enzyme-assistid subcritical water extraction and characterization of soy protein from heat-denatured meal. Journal of Food Engineering, 169, 250–258.
- Ma, M., & Mu, T. (2016). Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin. Food Chemistry, 194, 237–246.
- Maisuthisakul, P., Suttajit, M., & Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chemistry, 100(4), 1409–1418.
- Mariotti-Celis, M. S., Martínez-Cifuentes, M., Huamán-Castilla, N., Pedreschi, F., Iglesias-Rebolledo, N., & Pérez-Correa, J. R. (2018). Impact of an integrated process of hot pressurised liquid extraction-macroporous resin purification over the polyphenols, hydroxymethylfurfural and reducing sugars content of Vitis vinifera “Carménère” pomace extracts. International Journal of Food Science and Technology, 53, 1072–1078.
- Mirhosseini, H., & Amid, B. T. (2012). Influence of chemical extraction conditions on the physicochemical and functional properties of polysaccharide gum from durian (Durio zibethinus) seed. Molecules, 17(6), 6465–6480.
- Molyneux, P. (2004). The use of stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211–219.
- Mrabet, A., García-Borrego, A., Jiménez-Araujo, A., Fernández-Bolaños, J., Sindic, M., & Rodríguez-Gutiérrez, G. (2017). Phenolic extracts obtained from thermally treated secondary varieties of dates: Antimicrobial and antioxidant properties. LWT—Food Science and Technology, 79, 416–422.
- Mukhopadhyay, S., Luthria, D. L., & Robbins, R. J. (2006). Optimization of extraction process for phenolic acids from black cohosh (Cimicifuga racemosa) by pressurized liquid extraction. Journal of the Science of Food and Agriculture, 86(1), 156–162.
- Muñiz-Márquez, D. B., Wong-Paz, J. E., Contreras-Esquivel, J. C., Rodriguez-Herrera, R., & Aguilar, C. N. (2019). Extraction of Phenolic Compounds From Coriandrum sativum L. and Amaranthus hybridus L. by Microwave Technology. In R. R. Watson (Ed.), Polyphenols in plants (Vol. 12, 2nd ed., pp. 185–190). Cambridge, United States: Academic Press.
10.1016/B978-0-12-813768-0.00012-8 Google Scholar
- Mustafa, A., & Turner, C. (2011). Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Analytica Chimica Acta, 703(1), 8–18.
- Nelson, N. (1944). A photometric adaptation of the somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, 375–380.
- Oh, I. K., Bae, I. Y., & Lee, H. G. (2014). In vitro starch digestion and cake quality: Impact of the ratio of soluble and insoluble dietary fiber. International Journal of Biological Macromolecules, 63, 98–103.
- O'shea, N., Ktenioudaki, A., Smyth, T. P., Mcloughlin, P., Doran, L., Auty, M. A. E., … Gallagher, E. (2015). Physicochemical assessment of two fruit by-products as functional ingredients: Apple and orange pomace. Journal of Food Engineering, 153, 89–95.
- Peerajit, P., Chiewchan, N., & Devahastin, S. (2012). Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. Food Chemistry, 132(4), 1891–1898.
- Plaza, M., Abrahamsson, V., & Turner, C. (2013). Extraction and neoformation of antioxidant compounds by pressurized hot water extraction from apple byproducts. Journal of Agricultural and Food Chemistry, 61(23), 5500–5510.
- Ramos, L., Kristenson, E. M., & Brinkman, U. A. T. (2002). Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. Journal of Chromatography A, 975(1), 3–29.
- Rodrigues, G. d. M., Cardozo-Filho, L., & da Silva, C. (2017). Pressurized liquid extraction of oil from soybean seeds. The Canadian Journal of Chemical Engineering, 95(12), 2383–2389.
- Rodsamran, P., & Sothornvit, R. (2016). Effect of subcritical water technique and ethanolic solvent on total phenolic contents and antioxidant capacity of Thai rice plant. International Food Research Journal, 24(4), 1676–1684.
- Saldaña, M. D. A., Alvarez, V. H., & Haldar, A. (2012). Solubility and physical properties of sugars in pressurized water. The Journal of Chemical Thermodynamics, 55, 115–123.
- Seibel, N. F., & Beléia, A. D. P. (2009). The chemical characteristics and technological functionality of soybean based ingredients [Glycine max (L.) Merrill]: Carbohydrates and proteins. Brazilian Journal of Food Technology, 12(2), 113–122.
- Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidante activity. Journal of Functional Foods, 18, 757–781.
- Shalmashi, A., Golmohammad, F., & Eikani, M. H. (2008). Subcritical water extraction of caffeine from black tea leaf of Iran. Journal of Food Process Engineering, 31(3), 330–338.
- Sharma, S. K., Bansal, S., Mangal, M., Dixit, A. K., Gupta, R. K., & Mangal, A. K. (2016). Utilization of food processing by-products as dietary, functional and novel fiber: A rewiew. Critical Reviews in Food Science and Nutrition, 56(10), 1647–1661.
- Sikora, E., Cieslik, E., Leszczynska, T., Filipiak-Florkiwuacz, A., & Pisulewski, P. M. (2008). The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chemistry, 107(1), 50–55.
- Singh, P. P., & Saldaña, M. D. A. (2011). Subcritical water extraction of phenolic compounds from potato pell. Food Research International, 44(8), 2452–2458.
- Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178.
- Sovová, H. (2005). Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation. The Journal of Supercritical Fluids, 33(1), 35–52.
- Sun, T., Powers, J. R., & Tang, J. (2007). Evaluation of the antioxidant activity of asparagus, broccoli and their juices. Food Chemistry, 105(1), 101–106.
- Sun-Waterhouse, D. (2011). The development of fruit-based functional foods targeting the health and wellness market: A review. International Journal of Food Science & Technology, 46(5), 899–920.
- Teo, C. C., Tan, S. N., Yong, J. W. H., Hew, C. S., & Ong, E. S. (2010). Pressurized hot water extraction (PHWE). Journal of Chromatography, 1217, 2484–2494.
- Turner, C., & Ibáñez, E. (2011). Pressurized hot water extraction and processing. In N. Lebovka, E. Vorobiev, F. Chemat (Eds.) Enhancing extraction processes in the food industry series: contemporary food engineering, (pp. 223–255, vol. 1). Cornwall, England: CRC Press.
10.1201/b11241-9 Google Scholar
- Villagra, E., Santos, L. S., Vaz, B. G., Eberlin, M. N., & Laurie, F. (2012). Varietal discrimination of Chilean wines by direct injection mass spectrometry analysis combined with multivariate statistics. Food Chemistry, 131, 692–697.
- Vladić, J., Canli, O., Pavlić, B., Zeković, Z., Vidović, S., & Kaplan, M. (2017). Optimization of Satureja montana subcritical water extraction process and chemical characterization of volatile fraction of extracts. The Journal of Supercritical Fluids, 120, 86–94.
- World Health Organization—WHO. (2015). Guideline: Sugar intakes for adults and children. Retrieved from http://apps.who.int/iris/bitstream/10665/149782/1/9789241549028_eng.pdf
- Xu, H., Wang, W., Jiang, J., Yuan, F., & Gao, Y. (2015). Subcritical water extraction and antioxidant activity evaluation with on-line HPLC-ABTS+ assay of phenolic compounds from marigold (Tagetes erecta L.) flower residues. Journal of Food Science and Technology, 52(6), 3803–3811.
- Yilmaz, M. A., Ertas, A., Yener, I., Akdeniz, M., Cakir, O., Altun, M., … Temel, H. (2018). A comprehensive LC–MS/MS method validation for the quantitative investigation of 37 fingerprint phytochemicals in Achillea species: A detailed examination of A. coarctata and A. monocephala. Journal of Pharmaceutical and Biomedical Analysis, 154, 413–424.
- Yue, M., Xu, J., Li, Q., & Hou, W. (2011). Identification of coumarins in traditional Chinese medicine by direct-injection electrospray ionisation tandem mass spectrometry and high-performance liquid chromatography-mass spectrometry. Journal of Analytical Chemistry, 66(3), 290–295.
- Zakaria, S. M., & Kamal, S. M. M. (2016). Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients. Food Engineering Reviews, 8(1), 23–34.
- Zhang, D., Montañes, F., Srinivas, K., Fornari, T., Ibáñez, E., & King, J. W. (2010). Measurement and correlation of the solubility of carbohydrates in subcritical water. Industrial & Engineering Chemistry Research, 49(15), 6691–6698.
- Zhang, J., Wen, C., Gu, J., Ji, C., Duan, Y., & Zhang, H. (2019). Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes. International Journal of Biological Macromolecules, 123, 1002–1011.
- Zhao, J., Zhang, W., Zhu, X., Zhao, D., Wang, K., Wang, R., & Qu, W. (2011). The aqueous extract of Asparagus officinalis L. by-product exerts hypoglycaemic activity in streptozotocin-induced diabetic rats. Journal of the Science of Food and Agriculture, 91(11), 2095–2099.
- Zhu, X., Zhang, W., Zhao, J., Wang, J., & Qu, W. (2010). Hypolipidaemic and hepatoprotective effects of ethanolic and aqueous extracts from Asparagus officinalis L. by-products in mice fed a high-fat diet. Journal of the Science of Food and Agriculture, 90(7), 1129–1135.