Preserving Strawberry Quality by Employing Novel Food Preservation and Processing Techniques – Recent Updates and Future Scope – An Overview
Corresponding Author
Rajeev Bhat
Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden, Penang, 11800 Malaysia
Corresponding author. TEL: +604-653-5212; FAX: +604-657-3678; EMAIL: [email protected]; [email protected]Search for more papers by this authorRainer Stamminger
Sektion Haushaltstechnik, Institut fur Landtechnik, Universitat Bonn, Bonn, Germany
Search for more papers by this authorCorresponding Author
Rajeev Bhat
Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden, Penang, 11800 Malaysia
Corresponding author. TEL: +604-653-5212; FAX: +604-657-3678; EMAIL: [email protected]; [email protected]Search for more papers by this authorRainer Stamminger
Sektion Haushaltstechnik, Institut fur Landtechnik, Universitat Bonn, Bonn, Germany
Search for more papers by this authorAbstract
Appropriate use of currently available food processing and preservation techniques in a sustainable way is the need of the hour. Strawberry fruits have gained popularity worldwide for their unique taste, aroma and mouthfeel, and earn huge foreign exchequer for the growing region. Owing to higher perishability and shorter shelf life, freshly harvested strawberries need to be preserved instantaneously. There are many challenges concerning the safety and quality of strawberries which are faced during pre- and postharvest stages. In the present review, we are highlighting a few pros and cons of some of the available preservation technologies and how this can be used to preserve and extend the shelf life of freshly harvested strawberries.
Practical Applications
It is envisaged that providing details on the available techniques and identifying major gaps (on practical application) of these techniques can benefit the farming community, consumers and the dependent industry.
References
- Aaby, K., Mazur, S., Nes, A. and Skrede, G. 2012. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 132, 86–97.
- Aday, M.S. and Caner, C. 2014. Individual and combined effects of ultrasound, ozone and chlorine dioxide on strawberry storage life. LWT-Food Sci. Technol. 57, 344–351.
- Aday, M.S., Temizkan, R., Büyükcan, M.B. and Caner, C. 2013. An innovative technique for extending shelf life of strawberry: Ultrasound. LWT-Food Sci. Technol. 52, 93–101.
- Aday, M.S., Büyükcan, M.B., Temizkan, R. and Caner, C. 2014. Role of ozone concentrations and exposure times in extending shelf life of strawberry. Ozone: Sci. Eng. 36, 43–56.
- Aguiló-Aguayo, I., Oms-Oliu, G., Soliva-Fortuny, R. and Martín-Belloso, O. 2009. Changes in quality attributes throughout storage of strawberry juice processed by high-intensity pulsed electric fields or heat treatments. LWT-Food Sci. Technol. 42, 813–818.
- Aguiló-Aguayo, I., Soliva-Fortuny, R. and Martín-Belloso, O. 2010. Volatile compounds and changes in flavour-related enzymes during cold storage of high-intensity pulsed electric field- and heat-processed tomato juices. J. Sci. Food Agric. 90, 1597–1604.
- Alexandre, E.M.C., Santos-Pedro, D.M., Brandão, T.R.S. and Silva, C.L.M. 2011. Influence of aqueous ozone, blanching and combined treatments on microbial load of red bell peppers, strawberries and watercress. J. Food Eng. 105, 277–282.
- Alizadeh, H.R., Sharifi-Tehrani, A. and Hedjaroude, G.A. 2007. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Commun. Agric. Appl. Biol. Sci. 72, 795–800.
- Allais, I. and Létang, G. 2009. Influence of mist-chilling on post-harvest quality of fresh strawberries Cv. Mara des Bois and Gariguette. Int. J. Refrig. 32, 1495–1504.
- Almenar, E., Valle, D., Catala, R. and Gavara, R. 2007. Active package for wild strawberry fruit (Fragaria vesca L.). J. Agric. Food Chem. 55, 2240–2245.
- Alothman, M., Bhat, R. and Karim, A.A. 2009a. Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends Food Sci. Technol. 20, 201–212.
- Alothman, M., Bhat, R. and Karim, A.A. 2009b. UV Radiation- induced changes of antioxidant capacity of fresh-cut tropical fruits. Innov. Food Sci. Emerg. Technol. 10, 512–516.
- Annegowda, H.V., Bhat, R., Karim, A.A., Min-Tze, L. and Mansor, S.M. 2012. Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. J Food Sci. Technol. 49, 510–514.
- Anonymous (2001). Some important microbial pathogens associated with foodborne illness. FDA/CFSA food safety from farm to table: A national food safety initiative. U.S: FDA (Food and Drug Administration) (May 5).
- Araujo, E.S., Zawadneak, M.A., Tavares, M.T., Benatto, A. and Mógor, A.F. 2013. Occurrence of Lysiphlebus testaceipes (Cresson, 1880) (Hymenoptera: Braconidae: Aphidiinae) parasitizing Aphis forbesi weed, 1889 (Hemiptera: Aphididae) in the strawberries crop in the metropolitan region of Curitiba, Parana, Brazil. Braz. J. Biol. 73, 221–222.
- Awad, T.S., Moharram, H.A., Shaltout, O.E., Asker, D. and Youssef, M.M. 2012. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 48, 410–427.
- Baka, M., Mercier, J., Corcuff, R., Castaigne, F. and Arul, J. 1999. Photochemical treatment to improve storability of fresh strawberries. J. Food Sci. 64, 1068–1072.
- Bernardi, D., Botton, M., da Cunha, U.S., Bernardi, O., Malausa, T., Garcia, M.S. and Nava, D.E. 2013. Effects of azadirachtin on Tetranychus urticae (Acari: Tetranychidae) and its compatibility with predatory mites (Acari: Phytoseiidae) on strawberry. Pest Manag. Sci. 69, 75–80.
- Beuchat, L.R. 1998. Surface decontamination of fruits and vegetables: A review. World Health Organization (FSF/FOS/98.2).
- Bhat, R. and Karim, A.A. 2014. Towards producing novel fish gelatin films by combination treatments of ultraviolet radiation and sugars (ribose and lactose) as cross-linking agents. J Food Sci. Technol. 51, 1326–1333.
- Bhat, R. and Sridhar, K.R. 2008. Nutritional quality evaluation of electron beam-irradiated lotus (Nelumbo nucifera) seeds. Food Chem. 107, 174–184.
- Bhat, R. and Stamminger, R. 2014. Impact of ultraviolet radiation treatments on the physicochemical properties, antioxidants, enzyme activity and microbial load in freshly prepared hand pressed strawberry juice. Food Sci. Technol. Int. doi: 10.1177/1082013214536708. Online.
- Bhat, R., Sridhar, K.R., Karim, A.A., Young, C.C. and Arun, A.B. 2009. Influence of gamma-radiation on the nutritional and functional qualities of lotus seed flour. J. Agric. Food Chem. 57, 9524–9531.
- Bhat, R., Nor Kamaruddin, S.B.C., MIN-Tze, L. and Karim, A.A. 2011a. Sonication ameliorates Kasturi lime (Citrus microcarpa) juice quality. Ultrason. Sonochem. 18, 1295–1300.
- Bhat, R., Ameran, S.B., Karim, A.A. and Liong, M.T. 2011b. Quality attributes of starfruit (Averrhoa carambola L.) juice treated with ultraviolet radiation. Food Chem. 127, 641–644.
- Bhat, R., Karim, A.A. and Paliyath, G. 2012. Use of Electron beams for food preservation. In Progress in Food preservation ( R. Bhat, A.A. Karim and G. Paliyath, eds.) pp. 343–366, Wiley Blackwell Publishers, UK.
10.1002/9781119962045.ch17 Google Scholar
- Bhat, R., Abdullah, N., Din, R.H. and Tay, G.-S. 2013. Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J. Food Eng. 119, 707–713.
- Bialka, K.L. and Demirci, A. 2007a. Utilization of gaseous ozone for the decontamination of Escherichia coli O157:H7 and Salmonella on raspberries and strawberries. J. Food Prot. 70, 1093–1098.
- Bialka, K.L. and Demirci, A. 2007b. Efficacy of aqueous ozone for the decontamination of Escherichia coli O157:H7 and Salmonella on raspberries and strawberries. J. Food Prot. 70, 1088–1092.
- Bintsis, T., Litopoulou-Tzanetaki, E. and Robinson, R.K. 2000. Existing and potential applications of ultraviolet light in the food industry – A critical review. J. Sci. Food Agric. 80, 637–645.
10.1002/(SICI)1097-0010(20000501)80:6<637::AID-JSFA603>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- Blanda, G., Cerretani, L., Cardinali, A., Barbieri, S., Bendini, A. and Lercker, G. 2009. Osmotic dehydrofreezing of strawberries: Polyphenolic content, volatile profile and consumer acceptance. LWT-Food Sci. Technol. 42, 30–36.
- Bodelón, O.G., Avizcuri, J.-M., Fernández-Zurbano, P., Dizy, M. and Préstamo, G. 2013. Pressurization and cold storage of strawberry purée: Colour, anthocyanins, ascorbic acid and pectin methylesterase. LWT-Food Sci. Technol. 52, 123–130.
- Breitfellner, F., Solar, S. and Sontag, G. 2002a. Effect of γ-irradiation on phenolic acids in strawberries. J. Food Sci. 67, 517–521.
- Breitfellner, F., Solar, S. and Sontag, G. 2002b. Effect of gamma irradiation on flavonoids in strawberries. Eur. Food Res. Technol. 215, 28–31.
- Campaniello, D., Bevilacqua, A., Sinigaglia, M. and Corbo, M.R. 2008. Chitosan: antimicrobial activity and potential applications for preserving minimally processed strawberries. Food Microbiol. 25, 992–1000.
- Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H. and Wu, F. 2010. Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Cont. 21, 529–532.
- Castro, I., Teixeira, J.A., Salengke, S., Sastry, S.K. and Vicente, A.A. 2004. Ohmic heating of strawberry products: electrical conductivity measurements and ascorbic acid degradation kinetics. Innov. Food Sci. Emerg. Technol. 5, 27–36.
- Chandrapala, J., Oliver, C., Kentish, S. and Ashokkumar, M. 2012. Ultrasonics in food processing. Ultrason. Sonochem. 19, 975–983.
- Chemat, F., Zill-e-Huma and Khan, M.K. 2011. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 18, 813–835.
- Cheng, L.H., Soh, C.Y., Liew, S.C. and Teh, F.F. 2007. Effects of sonication and carbonation on guava juice quality. Food Chem. 104, 1396–1401.
- da Silva Pinto, M., Lajolo, F.M. and Genovese, M.I. 2008. Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chem. 107, 1629–1635.
- De Miccolis Angelini, R.M., Rotolo, C., Masiello, M., Gerin, D., Pollastro, S. and Faretra, F. 2014. Occurrence of fungicide resistance in populations of Botryotinia fuckeliana (Botrytis cinerea) on table grape and strawberry in southern Italy. Pest Manag. Sci. 70, 1785–1796.
- El-Hag, A.H., Dadarwal, R., Gonzalez, O.R., Jayaram, S.H. and Griffiths, M.W. 2010. Survivability of inoculated versus naturally grown bacteria in apple juice under pulsed electric fields. IEEE Trans. Ind. Appl. 46, 9–15.
- El-Mogy, M. and Alsanius, B.W. 2012. Cassia oil for controlling plant and human pathogens on fresh strawberries. Food Cont. 28, 157–162.
- Enkegaard, A., Sigsgaard, L., Kristensen, K. 2013. Shallot aphids, Myzus ascalonicus, in strawberry: Biocontrol potential of three predators and three parasitoids. J. Insect Sci. 13, 83. Available online: http://www.insectscience.org/13.83
- Erkan, M., Wang, S.Y. and Wang, C.Y. 2008. Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biol. Technol. 48, 163–171.
- Fan, Y., Xu, Y., Wang, D., Li, Z., Sun, J., Sun, L. and Zhang, B. 2009. Effect of alginate coating combined with yeast antagonist on strawberry (Fragaria ananassa) preservation quality. Postharvest Biol. Technol. 53, 84–90.
- Fang, X., Phillips, D., Li, H., Sivasithamparam, K. and Barbetti, M.J. 2011. Comparisons of virulence of pathogens associated with crown and root diseases of strawberry in Western Australia with special reference to the effect of temperature. Sci. Hortic. (Amsterdam) 131, 39–48.
- Fernández, A., Noriega, E. and Thompson, A. 2013. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol. 33, 24–29.
- Fernandes, V.C., Domingues, V.F., Mateus, N. and Delerue-Matos, C. 2012. Pesticide residues in Portuguese strawberries grown in 2009–2010 using integrated pest management and organic farming. Environ. Sci. Pollut. Res. Int. 19, 4184–4192.
- Filho, T.L., Lucia, S.M.D., Lima, R.M., Scolforo, C.Z., Lima, R.M., Carneiro, J.C.S., Pinheiro, C.J.G., Passamai, J.R.J.L. and Minim, V.P.R. 2014a. Consumer rejection threshold for strawberry radiation doses. Innov. Food Sci. Emerg. Technol. 23, 194–198.
- Filho, T.L., Lucia, S.M.D., Lima, R.M., Scolforo, C.Z., Carneiro, J.C.S., Pinheiro, C.J.G. and José Passamai, J.R.L. 2014b. Irradiation of strawberries: Influence of information regarding preservation technology on consumer sensory acceptance. Innov. Food Sci. Emerg. Technol. 26, 242–247. Available online July 2, 2014.
- Flores, G., Pérez, P., Gil, C., Blanch, G.P. and Del Castillo, M.L.R. 2013. Methyl jasmonate treatment of strawberry fruits enhances antioxidant activity and the inhibition of nitrite production in LPS-stimulated Raw 264.7 cells. J. Funct. Food 5, 1803–1809.
- Fonteles, T.V., Costa, M.G.M., De Jesus, A.L.T., De Miranda, M.R.A., Fernandes, F. and Rodrigues, S. 2012. Power ultrasound processing of cantaloupe melon juice: Effects on quality parameters. Food Res. Int. 48, 41–48.
- Gachovska, T., Cassada, D., Subbiah, J., Hanna, M., Thippareddi, H. and Snow, D. 2010. Enhanced anthocyanin extraction from red cabbage using pulsed electric field processing. J. Food Sci. 75, 44–49.
- Généreux, M., Grenier, M. and Côté, C. 2015. Persistence of Escherichia coli following irrigation of strawberry grown under four production systems: Field experiment. Food Cont. 47, 3–107.
- Giampieri, F., Tulipani, S., Alvarez-Suarez, J.M., Quiles, J.L., Mezzetti, B. and Battino, M. 2012. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 28, 9–19.
- Golmohamadi, A., Möller, G., Powers, J. and Nindo, C. 2013. Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrason. Sonochem. 20, 1316–1323.
- Guerrero-Beltrán, J.Á., Sepulveda, D.R., Góngora-Nieto, M.M., Swanson, B. and Barbosa-Cánovas, G.V. 2010. Milk thermization by pulsed electric fields (PEF) and electrically induced heat. J. Food Eng. 100, 56–60.
- Guerrero-Beltrán, J.A. and Barbosa-Cánovas, G.V. 2005. Advantages and limitations on processing foods by UV light. Food Sci. Technol. Int. 10, 137–147.
10.1177/1082013204044359 Google Scholar
- Guionet, A., Joubert-Durigneux, V., Packan, D., Cheype, C., Garnier, J.P., David, F., Zaepffel, C., Leroux, R.M., Teissié, J. and Blanckaert, V. 2014. Effect of nanosecond pulsed electric field on Escherichia coli in water: Inactivation and impact on protein changes. J. Appl. Microbiol. 117, 721–728. doi: 10.1111/jam.12558. Online.
- Gunness, P., Kravchuk, O., Nottingham, S.M., D'Arcy, B.R. and Gidley, M.J. 2009. Sensory analysis of individual strawberry fruit and comparison with instrumental analysis. Postharvest Biol. Technol. 52, 164–172.
- Harris, D.W., Hamby, K.A., Wilson, H.E. and Zalom, F.G. 2014. Seasonal monitoring of Drosophila suzukii (Diptera: Drosophilidae) in a mixed fruit production system. J. Asia Pac. Entomol. 17, 857–864.
- Hashmi, M.S., East, A.R., Palmer, J.S. and Heyes, J.A. 2013. Pre-storage hypobaric treatments delay fungal decay of strawberries. Postharvest Biol. Technol. 77, 75–79.
- Holcroft, D.M. and Kader, A.A. 1999. Controlled atmosphere-induced changes in pH and organic acid metabolism may affect colour of stored strawberry fruit. Postharvest Biol. Technol. 17, 19–32.
- Howell, A.D. and Daugovish, O. 2013. Biological control of Eotetranychus lewisi and Tetranychus urticae (Acari: Tetranychidae) on strawberry by four phytoseiids (Acari: Phytoseiidae). J. Econ. Entomol. 106, 80–85.
- Hu, L.Y., Hu, S.L., Wu, J., Li, Y.H., Zheng, J.L., Wei, Z.J., Liu, J., Wang, H.L., Liu, Y.S. and Zhang, H. 2012. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. J. Agric. Food Chem. 60, 8684–8693.
- Ito, T., Kobayashi, K., Czarnetzki, U. and Hamaguchi, S. 2010. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges. J. Phys. Appl. Phys. 43, 25–34.
- Jay, J., Loessner, M. and Golden, D. 2005. Modern Food Microbiology, seventh edition, pp. 1–790, Springer Science Business Media, New York, NY, USA.
- Jensen, B., Knudsen, I.M.B., Andersen, B., Nielsen, K.F., Thrane, U., Jensen, D.F. and Larsen, J. 2013. Characterization of microbial communities and fungal metabolites on field grown strawberries from organic and conventional production. Int. J. Food Microbiol. 160, 313–322.
- Jouki, M. and Khazaei, N. 2014. Effect of low-dose gamma radiation and active equilibrium modified atmosphere packaging on shelf life extension of fresh strawberry fruits. Food Pack. Shelf Life 1, 49–55.
10.1016/j.fpsl.2013.12.001 Google Scholar
- Keutgen, A.J. and Pawelzik, E. 2008. Influence of pre-harvest ozone exposure on quality of strawberry fruit under simulated retail conditions. Postharvest Biol. Technol. 49, 10–18.
- Kim, J.G., Yousef, A.E. and Dave, S. 1999. Application of ozone for enhancing the microbiological safety and quality of foods: A review. J. Food Prot. 62, 1071–1087.
- Kim, J.Y., Kim, H.J., Lim, G.O., Jang, S.A. and Song, K.B. 2010. The effects of aqueous chlorine dioxide or fumaric acid treatment combined with UV-C on postharvest quality of “Maehyang” strawberries. Postharvest Biol. Technol. 56, 254–256.
- Kirca, A., Özkan, M. and Cemeroğlu, B. 2007. Storage stability of strawberry jam color enhanced with black carrot juice concentrate. J. Food Process. Preserv. 31, 531–545.
- Liu, X., Wang, J., Gou, P., Mao, C., Zhu, Z.R. and Li, H. 2007. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A. Int. J. Food Microbiol. 119, 223–229.
- Luksiene, Z. and Paskeviciute, E. 2011. Novel approach to the microbial decontamination of strawberries: Chlorophyllin-based photosensitization. J. Appl. Microbiol. 110, 1274–1283.
- Mahmoud, B.S., Bhagat, A.R. and Linton, R.H. 2007. Inactivation kinetics of inoculated Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica on strawberries by chlorine dioxide gas. Food Microbiol. 24, 736–744.
- Marquenie, D., Michiels, C.W., Van Impe, J., Schrevens, E. and Nicolaϊ, B.N. 2003. Pulsed white light in combination with UV-C and heat to reduce storage rot of strawberry. Postharvest Biol. Technol. 28, 455–461.
- Meyers, R.A. 1985. Modified atmosphere packaging and process. US patent 4515266.
- Misra, N.N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J.P., Keener, K.M. and Cullen, P.J. 2014. In-package atmospheric pressure cold plasma treatment of strawberries. J. Food Eng. 125, 131–138.
- Moraga, G., Martínez-Navarrete, N. and Chiralt, A. 2006. Compositional changes of strawberry due to dehydration, cold storage and freezing–thawing processes. J. Food Process. Preserv. 30, 458–474.
- Moreno, J., Simpson, R., Baeza, A., Morales, J., Muñoz, C., Sastry, S. and Almonacid, S. 2012. Effect of ohmic heating and vacuum impregnation on the osmodehydration kinetics and microstructure of strawberries (cv. Camarosa). LWT – Food Sci. Technol. 45, 148–154.
- Nafchi, A.M., Bhat, R. and Karim, A.A. 2012. Pulsed Electric Fields (PEF) for food preservation: Updates. In Progress in Food preservation ( R. Bhat, A.A. Karim and G. Paliyath, eds.) pp. 277–289, Wiley-Blackwell Publishers, West Sussex, U.K.
10.1002/9781119962045.ch13 Google Scholar
- Nicoli, M.C., Anese, M. and Manzocco, L. 1999. Oil stability and antioxidant properties of an oil tomato food system as affected by processing. Adv. Food Sci. 21, 10–14.
- Nielsen, T. and Leufven, A. 2008. The effect of modified atmosphere packaging on the quality of Honeoye and Korona strawberries. Food Chem. 107, 1053–1063.
- Norton, A.P., Welter, S.C., Flexner, J.L., Jackson, C.G., Debolt, J.W. and Pickel, C. 1992. Parasitism of Lygus hesperus (Miridae) by Anaphes iole (Mymaridae) and Leiophron uniformis (Braconidae) in California strawberry. Biol. Cont. 2, 131–137.
- Nyoike, T.W. and Liburd, O.E. 2013. Effect of Tetranychus urticae (Acari: Tetranychidae), on marketable yields of field-grown strawberries in north-central Florida. J. Econ. Entomol. 106, 1757–1766.
- O'Connor, R.E. and Mitchell, G.E. 1991. Effect of irradiation on microorganisms in strawberries. Int. J. Food Microbiol. 12, 247–255.
- Odriozola-Serrano, I., Soliva-Fortuny, R., Hernández-Jover, T. and Martín-Belloso, O. 2009a. Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chem. 112, 258–266.
- Odriozola-Serrano, I., Soliva-Fortuny, R. and Martín-Belloso, O. 2009b. Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT-Food Sci. Technol. 42, 93–100.
- Pan, J., Vicente, A.R., Martínez, G.A., Chaves, A.R. and Civello, P.M. 2004. Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit. J. Sci. Food Agric. 84, 1831–1838.
- Pan, L., Zhang, W., Zhu, N., Mao, S. and Tu, K. 2014. Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography–mass spectrometry. Food Res. Int. 62, 162–168.
- Patist, A. and Bates, D. 2008. Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov. Food Sci. Emerg. Technol. 9, 147–154.
- Pérez, A.G., Sanz, C., Ríos, J.J., Olías, R. and Olías, J.M. 1999. Effects of ozone treatment on postharvest strawberry quality. J. Agric. Food Chem. 47, 1652–1656.
- Pombo, M.A., Dotto, M.C., Martínez, G.A. and Civello, P.M. 2009. UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation. Postharvest Biol. Technol. 51, 141–148.
- Puértolas, E., López, N., Condón, S., Álvarez, I. and Raso, J. 2010a. Potential applications of PEF to improve red wine quality. Trends Food Sci. Technol. 21, 247–255.
- Puértolas, E., López, N., Saldaña, G., Álvarez, I. and Raso, J. 2010b. Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. J. Food Eng. 98, 120–125.
- Raso, J. and Barbosa-Cánovas, G.V. 2003. Non-thermal preservation of foods using combined processing techniques. Crit. Rev. Food Sci. Nutr. 43, 265–285.
- Rodrigo, D., Loey, A.V. and Hendrickx, M. 2007. Combined thermal and high pressure colour degradation of tomato puree and strawberry juice. J. Food Eng. 79, 553–560.
- Saldaña, G., Puértolas, E., Condón, S., Álvarez, I. and Raso, J. 2010. Inactivation kinetics of pulsed electric field-resistant strains of Listeria monocytogenes and Staphylococcus aureus in media of different pH. Food Microbiol. 27, 550–558.
- Salengke, S., Sastry, S.K. and Zhang, H.Q. 2012. Pulsed electric field technology: Modeling of electric field and temperature distributions within continuous flow PEF treatment chamber. Int. Food Res. J. 19, 1137–1144.
- Sampson, C. and Kirk, W.D. 2013. Can mass trapping reduce thrips damage and is it economically viable? Management of the Western flower thrips in strawberry. PLoS ONE 8, e80787.
- Sanchez-Vega, R., Mujica-Paz, H., Marquez-Melendez, R., Ngadi, M.O. and Ortega-Rivas, E. 2009. Enzyme inactivation on apple juice treated by ultra-pasteurization and pulsed electric fields technology. J. Food Process. Preserv. 33, 486–499.
- Sandhya. 2010. Modified atmosphere packaging of fresh produce: Current status and future needs. LWT-Food Sci. Technol. 43, 381–392.
- Saulis, G. 2010. Electroporation of cell membranes: The fundamental effects of pulsed electric fields in food processing. Food Eng. Rev. 2, 52–73.
- Scheerlinck, N., Marquenie, D., Jancsók, P.T., Verboven, P., Moles, C.G., Banga, J.R. and Nicolaϊ, B.M. 2004. A model-based approach to develop periodic thermal treatments for surface decontamination of strawberries. Postharvest Biol. Technol. 34, 39–52.
- Segovia-Bravo, K.A., Guignon, B., Bermejo-Prada, A., Sanz, P.D. and Otero, L. 2012. Hyperbaric storage at room temperature for food preservation: A study in strawberry juice. Innov. Food Sci. Emerg. Technol. 15, 14–22.
- Shama, G. 1999. Ultraviolet light. In Encyclopaedia of Food Microbiology-3 ( R.K. Robinson, C. Batt and P. Patel, eds.) pp. 2208–2214, Academic Press, London, U.K.
10.1006/rwfm.1999.1615 Google Scholar
- Shaw, A.L., Svoboda, A., Jie, B., Nonnecke, G. and Mendonca, A. 2015. Survival of Escherichia coli on strawberries grown under greenhouse conditions. Food Microbiol. 46, 200–203.
- Shin, Y., Ryu, J.A., Liu, R.H., Nock, J.F., Polar-Cabrera, K. and Watkins, C.B. 2008. Fruit quality, antioxidant contents and activity, and antiproliferative activity of strawberry fruit stored in elevated CO2 atmospheres. J. Food Sci. 73, S339–S344.
- Sigsgaard, L., Betzer, C., Naulin, C., Eilenberg, J., Enkegaard, A., Kristensen, K. 2013. The effect of floral resources on parasitoid and host longevity: Prospects for conservation biological control in strawberries. J. Insect Sci. 13, 104. Available online: http://www.insectscience.org/13.104
- Skog, J.L. and Chu, C.L. 2001. Effect of ozone on qualities of fruits and vegetables in cold storage. Can. J. Plant Sci. 81, 773–778.
- Tadapaneni, R.K., Banaszewski, K., Patazca, E., Edirisinghe, I., Cappozzo, J., Jackson, L. and Burton-Freeman, B. 2012. Effect of high-pressure processing and milk on the anthocyanin composition and antioxidant capacity of strawberry-based beverages. J. Agric. Food Chem. 60, 5795–5802.
- Tiwari, B.K., O'Donnell, C.P., Patras, A., Brunton, N. and Cullen, P.J. 2009. Effect of ozone processing on anthocyanins and ascorbic acid degradation of strawberry juice. Food Chem. 113, 1119–1126.
- Trinetta, V., Linton, R.H. and Morgan, M.T. 2013. The application of high-concentration short-time chlorine dioxide treatment for selected specialty crops including Roma tomatoes (Lycopersicon esculentum), cantaloupes (Cucumis melo ssp. melo var. cantaloupensis) and strawberries (Fragaria × ananassa). Food Microbiol. 34, 296–302.
- Udompijitkul, P., Daeschel, M.A. and Zhao, Y. 2007. Antimicrobial effect of electrolyzed oxidizing water against Escherichia coli O157:H7 and Listeria monocytogenes on fresh strawberries (Fragaria × ananassa). J. Food Sci. 72, 397–406.
- Ugolini, L., Martini, C., Lazzeri, L., D'Avino, L. and Mari, M. 2014. Control of postharvest grey mould (Botrytis cinerea Per.: Fr.) on strawberries by glucosinolate-derived allyl-isothiocyanate treatments. Postharvest Biol. Technol. 90, 34–39.
- Ulukanli, Z., Oz, A.T. and Cenet, M. 2012. The authenticity of honey and its effect on strawberry fruits. J. Food Process. Preserv. 36, 364–373.
- Van der Steen, C., Jacxsens, L., Devlieghere, F. and Debevere, J. 2002. Combining high oxygen atmospheres with low oxygen modified atmosphere packaging to improve the keeping quality of strawberries and raspberries. Postharvest Biol. Technol. 26, 49–58.
- Van Timmeren, S. and Isaacs, R. 2013. Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot. 54, 126–133.
- Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V.D. and Moldão-Martins, M. 2013. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv. Camarosa) under commercial storage conditions. LWT-Food Sci. Technol. 52, 80–92.
- Verbeyst, L., Oey, I., Der Plancken, I.V., Hendrickx, M. and Loey, A.V. 2010. Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chem. 123, 269–274.
- Vicente, A.R., Martínez, G.A., Civello, P.M. and Chaves, A.R. 2002. Quality of heat-treated strawberry fruit during refrigerated storage. Postharvest Biol. Technol. 25, 59–71.
- Villa-Rojas, R., López-Malo, A. and Sosa-Morales, M.E. 2011. Hot water bath treatments assisted by microwave energy to delay postharvest ripening and decay in strawberries (Fragaria × ananassa). J. Sci. Food Agric. 91, 2265–2270.
- Walse, S., Krugner, R. and Tebbets, J.S. 2012. Postharvest treatment of strawberries with methyl bromide to control spotted wing drosophila, Drosophila suzukii. J. Asia Pac. Entomol. 15, 451–456.
- Wan, J., Coventry, J., Swiergon, P., Sanguansri, P. and Versteeg, C. 2009. Advances in innovative processing technologies for microbial inactivation and enhancement of food safety – pulsed electric field and low-temperature plasma. Trends Food Sci. Technol. 20, 414–424.
- Widiastuti, A., Yoshino, M., Saito, H., Maejima, K., Zhou, S., Odani, H., Narisawa, K., Hasegawa, M., Nitta, Y. and Sato, T. 2013. Heat shock-induced resistance in strawberry against crown rot fungus Colletotrichum gloeosporioide. Physiol. Mol. Pl. Path. 84, 86–91.
- Wszelaki, A.L. and Mitcham, E.J. 2003. Effect of combinations of hot water dips, biological control and controlled atmospheres for control of gray mold on harvested strawberries. Postharvest Biol. Technol. 27, 255–264.
- Yao, C.G., Luo, X., Li, C.X. and Mi, Y. 2009. Electric field stress simulation of plasma membrane under steep pulsed electric field. Gaodianya Jishu/High Voltage Eng. 35, 1088–1092.
- Zamani-Zadeh, M., Soleimanian-Zad, S. and Sheikh-Zeinoddin, M. 2013. Biocontrol of gray mold disease on strawberry fruit by integration of Lactobacillus plantarum A7 with ajwain and cinnamon essential oils. J. Food Sci. 78, 1582–1588.
- Zhang, H., Ma, L., Jiang, S., Lin, H., Zhang, X., Ge, L. and Xu, Z. 2010. Enhancement of biocontrol efficacy of Rhodotorula glutinis by salicylic acid against gray mold spoilage of strawberries. Int. J. Food Microbiol. 141, 122–125.
- Zhao, W., Yang, R., Hua, X., Zhang, W., Tang, Y. and Chen, T. 2010. Inactivation of polyphenoloxidase of pear by pulsed electric fields. Int. J. Food Eng. 6, 234–242.