Nerolidol assists Cisplatin to induce early apoptosis in human laryngeal carcinoma Hep 2 cells through ROS and mitochondrial-mediated pathway: An in vitro and in silico view
Vaitheeswari Balakrishnan
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Search for more papers by this authorCorresponding Author
Sindhu Ganapathy
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam, India
Correspondence
Sindhu Ganapathy, Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamilnadu, India.
Email: [email protected]
Search for more papers by this authorVinothkumar Veerasamy
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Search for more papers by this authorRamachandhiran Duraisamy
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Search for more papers by this authorSaranya Jawaharlal
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Search for more papers by this authorVennila Lakshmanan
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Search for more papers by this authorVaitheeswari Balakrishnan
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Search for more papers by this authorCorresponding Author
Sindhu Ganapathy
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam, India
Correspondence
Sindhu Ganapathy, Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamilnadu, India.
Email: [email protected]
Search for more papers by this authorVinothkumar Veerasamy
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Search for more papers by this authorRamachandhiran Duraisamy
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Search for more papers by this authorSaranya Jawaharlal
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Search for more papers by this authorVennila Lakshmanan
Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
Search for more papers by this authorAbstract
The objective of this study was to examine Nerolidol (NER) and Cisplatin (CIS) performed against human laryngeal carcinoma (Hep 2) cells. We evaluated the effect of NER, CIS, and NER + CIS on cell viability, cell migration, oxidative stress, mitochondrial membrane depolarization, nuclear condensation, apoptotic induction, and DNA damage in Hep 2 cells. We used the MTT assay to assess the cytotoxicity effect of NER and CIS on Hep 2 cells in terms of morphological alterations. Present results demonstrated that IC50 values of NER and CIS have potential cytotoxicity against Hep 2 cells. NER effectively inhibited cell viability, increased reactive oxygen species generation, apoptotic induction, and DNA damage in Hep 2 cells. In addition, the docking study evaluated the structural binding interaction of NER with PI3K/Akt and PCNA protein. Furthermore, NER with PI3K/Akt, PCNA has a higher crucial score and affinity. Present results infer that NER could be used to target signaling molecules in anticancer studies.
Practical applications
Nerolidol is a dietary phytochemical with high biological activity that can find in a variety of plants. Many researchers focused on Nerolidol to treat various diseases including cancer. However, there is no studies exist on laryngeal cancer. This study uses Nerolidol and Cisplatin to generate oxidative stress and stimulate apoptosis and DNA damage in human laryngeal cancer cells. Based on present findings, Nerolidol could be a choice of anticancer medication, either alone or in combination against oral squamous cell carcinomas in both in vitro and in vivo experimental systems.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data supporting this study's findings are available on request from the corresponding author.
REFERENCES
- Ames, B. N., & Wakimoto, P. (2002). Are vitamin and mineral deficiencies a major cancer risk? Nature Reviews Cancer, 2(9), 694–704. https://doi.org/10.1038/nrc886
- Arruda, D. C., DAlexandri, F. L., Katzin, A. M., & Uliana, S. R. (2005). Antileishmanial activity of the terpene nerolidol. Antimicrobial Agents and Chemotherapy, 49(5), 1679–1687. https://doi.org/10.1128/AAC.49.5.1679-1687.2005
- Arunachalam, S., Nagoor Meeran, M. F., Azimullah, S., Sharma, C., Goyal, S. N., & Ojha, S. (2021). Nerolidol attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/MAPK signaling pathways in doxorubicin-induced acute cardiotoxicity in rats. Antioxidants, 10(6), 984. https://doi.org/10.3390/antiox10060984
- Balunas, M. J., & Kinghorn, A. D. (2005). Drug discovery from medicinal plants. Life Sciences, 78(5), 431–441. https://doi.org/10.1016/j.lfs.2005.09.012
- Baskic, D., Popovic, S., Ristic, P., & Arsenijevic, N. N. (2006). Analysis of cycloheximide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biology International, 30(11), 924–932. https://doi.org/10.1016/j.cellbi.2006.06.016
- Biazi, B. I., Zanetti, T. A., Baranoski, A., Corveloni, A. C., & Mantovani, M. S. (2017). Cis-nerolidol induces endoplasmic reticulum stress and cell death in human hepatocellular carcinoma cells through extensive CYP2C19 and CYP1A2 oxidation. Basic & Clinical Pharmacology & Toxicology, 121, 334–341. https://doi.org/10.1111/bcpt.12772
- Bijani, F., Zabihi, E., Bijani, A., Nouri, H. R., Nafarzadeh, S., & Seyedmajidi, M. (2021). Evaluation of apoptotic effect of crocin, cisplatin, and their combination in human oral squamous cell carcinoma cell line HN5. Dental Research Journal, 18, 70.
- Bobadilla, A. V., Arevalo, J., Sarro, E., Byrne, H. M., Maini, P. K., Carraro, T., Balocco, S., Meseguer, A., & Alarcon, T. (2019). In vitro cell migration quantification method for scratch assays. Journal of the Royal Society Interface, 16(151), 20180709. https://doi.org/10.1098/rsif.2018.0709
- Brady, H. J. M. (2004). Apoptosis methods and protocols (Vol. 282). Human Press. https://doi.org/10.1385/1592598129
10.1385/1592598129 Google Scholar
- Budisan, L., Gulei, D., Zanoaga, O., Irimie, A., Chira, S., Braicu, C., & Berindan-Neagoe, I. (2017). Dietary intervention by phytochemicals and their role in modulating coding and non-coding genes in cancer. International Journal of Molecular Sciences, 18(6), 1178. https://doi.org/10.3390/ijms18061178
- Camacho-Alonso, F., Gómez-Albentosa, T., Oñate-Sánchez, R. E., Tudela-Mulero, M. R., Sanchez-Siles, M., Gomez-Garcia, F. J., & Guerrero-Sanchez, Y. (2020). In vitro study of synergic effect of cisplatin and low molecular weight heparin on oral squamous cell carcinoma. Frontiers in Oncology, 2588, 549412. https://doi.org/10.3389/fonc.2020.549412
- Chan, W. K., Tan, L. T., Chan, K. G., Lee, L. H., & Goh, B. H. (2016). Nerolidol: A sesquiterpene alcohol with multi Faceted pharmacological and biological activities. Molecules, 21(5), 529.
- Cheng, Y., Li, S., Gao, L., Zhi, K., & Ren, W. (2021). The molecular basis and therapeutic aspects of cisplatin resistance in oral squamous cell carcinoma. Frontiers in Oncology, 11, 761379. https://doi.org/10.3389/fonc.2021.761379
- Chiu, C.H., Chou, Y. C., Lin, J.P., Kuo, C. L., Lu, H. F., Huang, Y. P., Yu, C.C., Lin, M. L., Chung, J. G. (2015). Chloroform extract of Solanum lyratum induced G0/G1 arrest via p21/p16 and induced apoptosis via reactive oxygen species, caspases and mitochondrial pathways in human oral cancer cell lines. The American Journal of Chinese Medicine, 43(7), 1453–1469. doi:https://doi.org/10.1142/S0192415X15500822
- Clerkin, J. S., Naughton, R., Quiney, C., & Cotter, T. G. (2008). Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Letters, 266(1), 30–36. https://doi.org/10.1016/j.canlet.2008.02.029
- Daniel, B., & DeCoster, M. A. (2004). Quantification of sPLA2-induced early and late apoptosis changes in neuronal Cell cultures using combined TUNEL and DAPI staining. Brain Research Protocols, 13(3), 144–150. https://doi.org/10.1016/j.brainresprot.2004.04.001
- Darzynkiewicz, Z., Li, X., & Gong, J. (1994). Assays of cell viability: Discrimination of cells dying by apoptosis. Methods in Cell Biology, 41, 15–38. https://doi.org/10.1016/S0091-679X(08)61707-0
- Deng, S., Shanmugam, M. K., Kumar, A. P., Yap, C. T., Sethi, G., & Bishayee, A. (2019). Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer, 125(8), 1228–1246. https://doi.org/10.1002/cncr.31978
- Eidet, J. R., Pasovic, L., Maria, R., Jackson, C. J., & Utheim, T. P. (2014). Objective assessment of changes in nuclear morphology and cell distribution following induction of apoptosis. Diagnostic Pathology, 9(1), 1–9.
- Fidyt, K., Fiedorowicz, A., Strządała, L., & Szumny, A. (2016). β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Medicine, 5(10), 3007–3017. https://doi.org/10.1002/cam4.816
- Fonseca, D. V., Salgado, P. R., de Carvalho, F. L., Salvadori, M. G., Penha, A. R., Leite, F. C., Borges, C. J., Piuvezam, M. R., Pordeus, L. C., Sousa, D. P., & Almeida, R. N. (2016). Nerolidol exhibits antinociceptive and anti-inflammatory activity: Involvement of the GABA ergic system and proinflammatory cytokines. Fundamental & Clinical Pharmacology, 30(1), 14–22. https://doi.org/10.1111/fcp.12166
- Franklin, W. A., & Locker, J. D. (1981). Ethidium bromide: A nucleic acid stain for tissue section. Journal of Histochemistry and Cytochemistry, 29, 572–576. https://doi.org/10.1177/29.4.6166660
- Fruehauf, J. P., & Meyskens, F. L. (2007). Reactive oxygen species: A breath of life or death? Clinical Cancer Research, 13(3), 789–794. https://doi.org/10.1158/1078-0432.CCR-06-2082
- Fukuishi, N., & Gemba, M. (1989). Use of cultured renal epithelial cells for the study of cisplatin toxicity. Japanese Journal of Pharmacology, 50(2), 247–249. https://doi.org/10.1254/jjp.50.247
- Ganapathy, P., Elumalai, K., Arumugam, M. K., Amulya, C. S., & Manivel, R. (2019). Anticancer potential of Siddha formulations against oral cancer cell line in vitro. Trends in Medicine, 19, 1–6. https://doi.org/10.15761/TiM.1000192
10.15761/TiM.1000192 Google Scholar
- Gedik, C. M., Ewen, S. W. B., & Collins, A. R. (1992). Single-cell gel electrophoresis applied to the analysis of UVC damage and its repair in human cells. International Journal of Radiation Biology, 62(3), 313–320. https://doi.org/10.1080/09553009214552161
- Grabacka, M. M., Gawin, M., & Pierzchalska, M. (2014). Phytochemical modulators of mitochondria: The search for chemopreventive agents and supportive therapeutics. Pharmaceuticals, 7(9), 913–942. https://doi.org/10.3390/ph7090913
10.3390/ph7090913 Google Scholar
- Haiming, D., Chunhua, C., Dongmei, G., Young-Won Chin, C., Yi, D., A Douglas, K., & Steven, M D. A. (2009). Selective induction of apoptosis of human oral cancer cell lines by avocado extracts via a ROS-mediated mechanism. Nutrition and cancer, 61(3), 348–56.
- Halliwell, B., & Whiteman, M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? British Journal of Pharmacology, 142(2), 231–255.
- Hanusova, V., Caltova, K., Svobodova, H., Ambroz, M., Skarka, A., Murinova, N., Kralova, V., Tomsik, P., & Skalova, L. (2017). The effects of β-caryophyllene oxide and trans-nerolidol on the efficacy of doxorubicin in breast cancer cells and breast tumor-bearing mice. Biomedicine & Pharmacotherapy, 95, 828–836.
- Hsu, P. P., & Sabatini, D. M. (2008). Cancer cell metabolism: Warburg and beyond. Cell, 134, 703–707. https://doi.org/10.1016/j.cell.2008.08.021
- Iqubal, A., Sharma, S., Ansari, M. A., Najmi, A. K., Syed, M. A., Ali, J., & Haque, S. E. (2019). Nerolidol attenuates cyclophosphamide-induced cardiac inflammation, apoptosis and fibrosis in Swiss Albino mice. European Journal of Pharmacology, 863, 172666. https://doi.org/10.1016/j.ejphar.2019.172666
- Ji, B. C., Yu, C. C., Yang, S. T., Hsia, T. C., Yang, J. S., Lai, K. C., & Chung, J. G. (2012). Induction of DNA damage by deguelin is mediated through reducing DNA repair genes in human non-small cell lung cancer NCI H460 cells. Oncology Reports, 27(4), 959–964.
- Kirishnamaline, G., Magdaline, J. D., Chithambarathanu, T., Aruldhas, D., & Anuf, A. R. (2021). Theoretical investigation of structure, anticancer activity and molecular docking of thiourea derivatives. Journal of Molecular Structure, 1225, 129118. https://doi.org/10.1016/j.molstruc.2020.129118
- Klopell, F. C., Lemos, M., Sousa, J. P., Comunello, E., Maistro, E. L., Bastos, J. K., & De Andrade, S. F. (2007). Nerolidol, an antiulcer constituent from the essential oil of Baccharis dracunculifolia DC (Asteraceae). Zeitschrift Fur Naturforschung C, 62(7–8), 537–542. https://doi.org/10.1515/znc-2007-7-812
- Krist, S., Banovac, D., Tabanca, N., Wedge, D. E., Gochev, V. K., Wanner, J., Schmidt, E., & Jirovetz, L. (2015). Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities. Natural Product Communications, 10(1), 1934578X1501000133. https://doi.org/10.1177/1934578X1501000133
- Kumar, N., Tomar, R., Pandey, A., Tomar, V., Singh, V. K., & Chandra, R. (2018). Preclinical evaluation and Molecular docking of 1, 3-benzodioxole propargyl ether derivatives as novel inhibitor for combating the histone Deacetylase enzyme in cancer. Artificial Cells, Nanomedicine, and Biotechnology, 46(6), 1288–1299. https://doi.org/10.1080/21691401.2017.1369423
- Langhasova, L., Hanusova, V., Rezek, J., Stohanslova, B., Ambroz, M., Kralova, V., Vanek, T., Lou, J. D., Yun, Z. L., Yang, J., & Skalova, L. (2014). Essential oil from Myrica rubra leaves inhibits cancer cell proliferation and induces apoptosis in several human intestinal lines. Industrial Crops and Products, 59, 20–26. https://doi.org/10.1016/j.indcrop.2014.04.018
- Liou, G. Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research, 44, 479–496. https://doi.org/10.3109/10715761003667554
- Lnenickova, K., Svobodova, H., Skalova, L., Ambroz, M., Novak, F., & Matouskova, P. (2018). The impact of Sesquiterpenes β-caryophyllene oxide and trans-nerolidol on xenobiotic-metabolizing enzymes in mice in vivo. Xenobiotica, 48(11), 1089–1097. https://doi.org/10.1080/21691401.2017.1369423
- Lopez-Lazaro, M. (2007). Dual role of hydrogen peroxide in cancer: Possible relevance to cancer chemoprevention and therapy. Cancer Letters, 252(1), 1–8. https://doi.org/10.1016/j.canlet.2006.10.029
- Mendanha, S. A., Moura, S. S., Anjos, J. L., Valadares, M. C., & Alonso, A. (2013). Toxicity of terpenes on fibroblast cells compared to their hemolytic potential and increase in erythrocyte membrane fluidity. Toxicology In Vitro, 27(1), 323–329. https://doi.org/10.1016/j.tiv.2012.08.022
- Mishra, S., Verma, S. S., Rai, V., Awasthee, N., Chava, S., Hui, K. M., & Sethi, G. (2019). Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cellular and Molecular Life Sciences, 76(10), 1947–1966. https://doi.org/10.1007/s00018-019-03053-
- Moosavi, M. A., Haghi, A., Rahmati, M., Taniguchi, H., Mocan, A., Echeverría, J., & Atanasov, A. G. (2018). Phytochemicals as potent modulators of autophagy for cancer therapy. Cancer Letters, 424, 46–69. https://doi.org/10.1016/j.canlet.2018.02.030
- Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
- NavaneethaKrishnan, S., Rosales, J. L., & Lee, K. Y. (2019). ROS-mediated cancer cell killing through dietary phytochemicals. Oxidative Medicine and Cellular Longevity, 2019, 1–16. https://doi.org/10.1155/2019/9051542
- Papkovsky, D. B., Hynes, J., & Will, Y. (2006). Respirometric screening technology for ADME-Tox studies. Expert Opinion on Drug Metabolism & Toxicology, 2(2), 313–323. https://doi.org/10.1517/17425255.2.2.313
- Patra, S., Pradhan, B., Nayak, R., Behera, C., Panda, K. C., Das, S., & Bhutia, S. K. (2021). Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives. Phytotherapy Research, 35(8), 4194–4214.
- Peng, B., Ortega, J., Gu, L., Chang, Z., & Li, G. M. (2019). Phosphorylation of proliferating cell nuclear antigen promotes cancer progression by activating the ATM/Akt/GSK3β/Snail signaling pathway. Journal of Biological Chemistry, 294(17), 7037–7045. https://doi.org/10.1074/jbc.RA119.007897
- Petersen, P. E. (2009). Oral cancer prevention and control–the approach of the World Health Organization. Oral Oncology, 45(4–5), 454–460. https://doi.org/10.1016/j.oraloncology.2008.05.023
- Prasadani, M., Bogahawaththa, S., Illeperuma, R. P., & Kodithuwakku, S. P. (2021). Leaf extract of Osbeckia octandra L. (Heen Bovitiya) suppresses human oral squamous cell carcinoma cells migration and induces cellular DNA damage. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 33(2), 215–220. https://doi.org/10.1016/j.ajoms.2020.09.003
- Price, P. M., Yu, F., Kaldis, P., Aleem, E., Nowak, G., Safirstein, R. L., et al. (2006). Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. Journal of the American Society of Nephrology, 17, 2434–2442. https://doi.org/10.1681/ASN.2006020162
- Ramachandhiran, D., Sankaranarayanan, C., Murali, R., Babukumar, S., & Vinothkumar, V. (2019). β-Caryophyllene promotes oxidative stress and apoptosis in KB cells through activation of mitochondrial-mediated pathway-An in-vitro and in-silico study. Archives of Physiology and Biochemistry, 128, 148–162. https://doi.org/10.1080/13813455.2019.1669057
- Reczek, C. R., & Chandel, N. S. (2017). The two faces of reactive oxygen species in cancer. Annual Review of Cancer Biology, 2017(1), 79–98. https://doi.org/10.1146/annurev-cancerbio-041916-065808
10.1146/annurev?cancerbio?041916?065808 Google Scholar
- Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863, 2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012
- Saito, A. Y., Rodriguez, A. A., Vega, D. S., Sussmann, R. A., Kimura, E. A., & Katzin, A. M. (2016). Antimalarial activity of the terpene nerolidol. International Journal of Antimicrobial Agents, 48(6), 641–646. https://doi.org/10.1016/j.ijantimicag.2016.08.017
- Schumacker, P. T. (2006). Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell, 10(3), 175–176. https://doi.org/10.1016/j.ccr.2006.08.015
- Shankar, E., Weis, M. C., Avva, J., Shukla, S., Shukla, M., Sreenath, S. N., & Gupta, S. (2019). Complex Systems biology approach in connecting PI3K-Akt and NF-κB pathways in prostate cancer. Cell, 8(3), 201. https://doi.org/10.3390/cells8030201
- Shi, Y. (2001). A structural view of mitochondria-mediated apoptosis. Nature Structural & Molecular Biology, 8, 394–401. https://doi.org/10.1038/87548
- Shinde, S. D., Jain, P. G., Cheke, R. S., Surana, S. J., & Gunjegaonkar, S. M. (2021). Abrogation of cisplatin-induced nephrotoxicity in rats and HEK-293 cell lines by formononetin: In vivo and in vitro study. Comparative Clinical Pathology, 30(4), 617–625. https://doi.org/10.1007/s00580-021-03252-x
- Si, H., & Liu, D. (2014). Dietary anti aging phytochemicals and mechanisms associated with prolonged survival. The Journal of Nutritional Biochemistry, 25(6), 581–591. https://doi.org/10.1016/j.jnutbio.2014.02.001
- Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184–191. https://doi.org/10.1016/0014-4827(88)90265-0
- Sohn, S. J., Kim, S. Y., Kim, H. S., Chun, Y. J., Han, S. Y., Kim, S. H., & Moon, A. (2013). In vitro evaluation of biomarkers for cisplatin-induced nephrotoxicity using HK-2 human kidney epithelial cells. Toxicology Letters, 217(3), 235–242. https://doi.org/10.1016/j.toxlet.2012.12.015
- Su, C. C., Lee, K. I., Chen, M. K., Kuo, C. Y., Tang, C. H., & Liu, S. H. (2016). Cantharidin induced oral squamous cell carcinoma cell apoptosis via the JNK-regulated mitochondria and endoplasmic reticulum stress-related signaling pathways. PLoS One, 11(12), e0168095. https://doi.org/10.1371/journal.pone.0168095
- Sun, Y., Wang, X., Zhou, Q., Lu, Y., Zhang, H., Chen, Q., Zhao, M., & Su, S. (2015). Inhibitory effect of emodin on migration, invasion and metastasis of human breast cancer MDA-MB-231 cells in vitro and in vivo. Oncology Reports, 33(1), 338–346. https://doi.org/10.3892/or.2014.3585
- Szatrowski, T. P., & Nathan, C. F. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Research, 51(3), 794–798.
- Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., & Sasaki, Y. F. (2000). Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis, 35(3), 206–221.
- Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., Chiao, P. J., Achanta, G., Arlinghaus, R. B., Liu, J., & Huang, P. (2006). Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell, 10(3), 241–252. https://doi.org/10.1016/j.ccr.2006.08.009
- Umesh, H. R., Ramesh, K. V., & Devaraju, K. S. (2020). Molecular docking studies of phytochemicals against trehalose–6 Phosphate phosphatases of pathogenic microbes. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 1–4. https://doi.org/10.1186/s43088-019-0028-6
10.1186/s43088?019?0028?6 Google Scholar
- Vijayalakshmi, A., & Sindhu, G. (2017). Umbelliferone arrest cell cycle at G0/G1 phase and induces apoptosis in Human oral carcinoma (KB) cells possibly via oxidative DNA damage. Biomedicine & Pharmacotherapy, 92, 661–671. https://doi.org/10.1016/j.biopha.2017.05.128
- Vo, T. T., Liu, J. F., Wu, C. Z., Lin, W. N., Chen, Y. L., & Lee, I. T. (2020). Surfactin from Bacillus subtilis induces apoptosis in human oral squamous cell carcinoma through ROS-regulated mitochondrial pathway. Journal of Cancer, 11(24), 7253–7263. https://doi.org/10.7150/jca.50835
- Wang, J., Luo, B., Li, X., Lu, W., Yang, J., Hu, Y., Huang, P., & Wen, S. (2017). Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells. Cell Death & Disease, 8(6), e2887.
- Wlodkowic, D., Skommer, J., & Darzynkiewicz, Z. (2009). Flow cytometry-based apoptosis detection. Methods in Molecular Biology, 559, 19–32. https://doi.org/10.1007/978-1-60327-017-5_2
- Wong, R. S. (2011). Apoptosis in cancer: From pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research, 30(1), 1–14. https://doi.org/10.1186/1756-9966-30-87
- Zhou, M. X., Li, G. H., Sun, B., Xu, Y. W., Li, A. L., Li, Y. R., Ren, D. M., Wang, X. N., Wen, X. S., & Lou, H. X. (2018). Identification of novel Nrf2 activators from Cinnamomum chartophyllum HW Li and their potential application of preventing oxidative insults in human lung epithelial cells. Redox Biology, 14, 154–163.