Therapeutic approaches of nutraceuticals in the prevention of Alzheimer's disease
Corresponding Author
Surya Nath Pandey
Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
Department of Pharmacology, College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UP, India
Correspondence
Surya Nath Pandey, Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
Email: [email protected]; [email protected]
Search for more papers by this authorGurfateh Singh
Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorBhupesh Chander Semwal
Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
Search for more papers by this authorGaurav Gupta
School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
Search for more papers by this authorKhalid Saad Alharbi
Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
Search for more papers by this authorWaleed Hassan Almalki
Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
Search for more papers by this authorMohammed Albratty
Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
Search for more papers by this authorAsim Najmi
Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
Search for more papers by this authorAbdulkarim M. Meraya
Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
Search for more papers by this authorCorresponding Author
Surya Nath Pandey
Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
Department of Pharmacology, College of Pharmacy, Teerthanker Mahaveer University, Moradabad, UP, India
Correspondence
Surya Nath Pandey, Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
Email: [email protected]; [email protected]
Search for more papers by this authorGurfateh Singh
Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorBhupesh Chander Semwal
Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
Search for more papers by this authorGaurav Gupta
School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
Search for more papers by this authorKhalid Saad Alharbi
Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
Search for more papers by this authorWaleed Hassan Almalki
Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
Search for more papers by this authorMohammed Albratty
Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
Search for more papers by this authorAsim Najmi
Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
Search for more papers by this authorAbdulkarim M. Meraya
Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
Search for more papers by this authorAbstract
Alzheimer's disease (AD) is a neurological illness that causes memory loss over time. Currently, available pharmaceutical medicines and products are limited, and they have side effects at a higher price. Researchers and scientists have observed significant effects of nutraceuticals. Various preclinical and clinical studies were investigated for the Anti-Alzheimer's activity of nutraceuticals. The increasing ability of the pathogenesis of AD has led to the analysis of novel therapeutic targets, including the pathophysiological mechanisms and distinct cascades. So, current improvement will show the most adequate and prominent nutraceuticals and suggested concise mechanisms involving autophagy regulation, anti-inflammatory, antioxidant, mitochondrial homeostasis, and others. The effects of nutraceuticals cannot be ignored; it is important to investigate high-quality clinical trials. Given the potential of nutraceuticals to battle AD as multi-targeted therapies, it's vital to evaluate them as viable lead compounds for drug discovery and development. To the best of the authors ‘knowledge, modification of blood–brain barrier permeability, bioavailability, and aspects of randomized clinical trials should be considered in prospective investigations.
Practical applications
Advancements in molecular diagnostic and fundamentals have implemented particular usefulness for drug evaluation. An excess of experimental knowledge occurs regarding the effect of nutraceuticals on AD. There are various preclinical and clinical studies that have been done on nutraceuticals. In addition, various substitute inhibit and enhance some pathophysiological levels associated with AD. Nutraceuticals are easily available and have fewer side effects with cost-effective advantages. However, further investigations and clinical trials are required to encourage its effect on disease.
CONFLICT OF INTEREST
None.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- Abe, M., & Bonini, N. M. (2013). MicroRNAs and neurodegeneration: Role and impact. Trends in Cell Biology, 23(1), 30–36.
- Ahn, J. H., Hu, Y., Hernandez, M., & Kim, J. R. (2011). Crocetin inhibits beta-amyloid fibrillization and stabilizes beta-amyloid oligomers. Biochemical and Biophysical Research Communications, 414(1), 79–83.
- Akhondzadeh, S., Shafiee Sabet, M., Harirchian, M. H., Togha, M., Cheraghmakani, H., Razeghi, S., Hejazi, S. S., Yousefi, M. H., Alimardani, R., Jamshidi, A., & Rezazadeh, S. A. (2010). A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer's disease. Psychopharmacology, 207(4), 637–643.
- Alzheimer'sAssociation, (2009). http://www.alz.org/alzheimers_disease_facts_and_figures.asp
- Andrade, S., Ramalho, M. J., Loureiro, J. A., & Pereira, M. D. C. (2019). Natural compounds for Alzheimer's disease therapy: A systematic review of preclinical and clinical studies. International Journal of Molecular Sciences, 20(9), 2313.
- Arellanes, I. C., Choe, N., Solomon, V., He, X., Kavin, B., Martinez, A. E., Kono, N., Buennagel, D. P., Hazra, N., Kim, G., & D'Orazio, L. M. (2020). Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBioMedicine, 59, 102883. https://doi.org/10.1016/j.ebiom.2020.102883
- Association As. (2016). 2016 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 12(4), 459–509.
- Asadi, F., Jamshidi, A. H., Khodagholi, F., Yans, A., Azimi, L., Faizi, M., Vali, L., Abdollahi, M., Ghahremani, M. H., & Sharifzadeh, M. (2015). Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers. Pharmacology, Biochemistry, and Behavior, 139, 47–58.
- Ayaz, M., Sadiq, A., Junaid, M., Ullah, F., Ovais, M., Ullah, I., Ahmed, J., & Shahid, M. (2019). Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Frontiers in Aging Neuroscience, 11, 155.
- Bate, C., Salmona, M., & Williams, A. (2004). Ginkgolide B inhibits the neurotoxicity of prions or amyloid-beta1-42. Journal of Neuroinflammation, 1, 4.
- Bate, C., Tayebi, M., & Williams, A. (2008). Ginkgolides protect against amyloid-beta1-42-mediated synapse damage in vitro. Molecular Neurodegeneration, 3, 1.
- Bazinet, R. P., & Layé, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience, 15(12), 771–785.
- Bentsen, H. (2017). Dietary polyunsaturated fatty acids, brain function and mental health. Microbial Ecology in Health and Disease, 28(sup1), 1281916.
10.1080/16512235.2017.1281916 Google Scholar
- Brady, R. O., & Schiffmann, R. (2004). Enzyme-replacement therapy for metabolic storage disorders. The Lancet Neurology, 3(12), 752–756.
- Brown, L. A., Riby, L. M., & Reay, J. L. (2010). Supplementing cognitive aging: A selective review of the effects of ginkgo biloba and a number of everyday nutritional substances. Experimental Aging Research, 36, 105–122.
- Calfio, C., Gonzalez, A., Singh, S. K., Rojo, L. E., & Maccioni, R. B. (2020). The emerging role of nutraceuticals and phytochemicals in the prevention and treatment of Alzheimer's disease. Journal of Alzheimer's Disease, 77(1), 33–51.
- Cao, C., Cirrito, J. R., Lin, X., Wang, L., Verges, D. K., Dickson, A., Mamcarz, M., Zhang, C., Mori, T., Arendash, G. W., & Holtzman, D. M. (2009). Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice. Journal of Alzheimer's Disease, 17(3), 681–697.
- Cascella, M., Bimonte, S., Barbieri, A., Del Vecchio, V., Muzio, M. R., Vitale, A., Benincasa, G., Ferriello, A. B., Azzariti, A., Arra, C., & Cuomo, A. (2018). Dissecting the potential roles of Nigella sativa and its constituent thymoquinone on the prevention and on the progression of Alzheimer's disease. Frontiers in Aging Neuroscience, 10, 16.
- Casley, C. S., Canevari, L., Land, J. M., Clark, J. B., & Sharpe, M. A. (2002). Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. Journal of Neurochemistry, 80(1), 91–100.
- Castelli, V., d'Angelo, M., Quintiliani, M., Benedetti, E., Cifone, M. G., & Cimini, A. (2021). The emerging role of probiotics in neurodegenerative diseases: New hope for Parkinson's disease? Neural Regeneration Research, 16(4), 628–634.
- Cazarolli, L. H., Zanatta, L., Alberton, E. H., Bonorino Figueiredo, M. S., Folador, P., Damazio, R. G., Pizzolatti, M. G., & Barreto Silva, F. R. (2008). Flavonoids: Prospective drug candidates. Mini Reviews in Medicinal Chemistry, 8(13), 1429–1440.
- Chen, F., Eckman, E. A., & Eckman, C. B. (2006). Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenosides. The FASEB Journal, 20, 1269–1271.
- Chen, L. M., Lin, Z. Y., Zhu, Y. G., Lin, N., Zhang, J., Pan, X. D., & Chen, X. C. (2012). Ginsenoside Rg1 attenuates beta-amyloid generation via suppressing PPARgamma-regulated BACE1 activity in N2a-APP695 cells. European Journal of Pharmacology, 675, 15–21.
- Chin-Chan, M., Navarro-Yepes, J., & Quintanilla-Vega, B. (2015). Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Frontiers in Cellular Neuroscience, 9, 124.
- Craft, N. E., Haitema, T. B., Garnett, K. M., Fitch, K. A., & Dorey, C. K. (2004). Carotenoid, tocopherol, and retinol concentrations in elderly human brain. The Journal of Nutrition, Health & Aging, 8(3), 156–162.
- Crews, L., & Masliah, E. (2010). Molecular mechanisms of neurodegeneration in Alzheimer's disease. Human Molecular Genetics, 19(R1), R12–R20.
- Dall'Igna, O. P., Fett, P., Gomes, M. W., Souza, D. O., Cunha, R. A., & Lara, D. R. (2007). Caffeine and adenosine a(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Experimental Neurology, 203(1), 241–245.
- De Jager, C. A., Oulhaj, A., Jacoby, R., & Refsum, H. (2011). Smith, AD cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: A randomized controlled trial. International Journal of Geriatric Psychiatry, 27, 592–600.
- Defelice, S. L. (1995). The nutraceutical revolution: Its impact on food industry R&D. Trends in Food Science & Technology, 6(2), 59–61.
- Desrumaux, C., Pisoni, A., Meunier, J., Deckert, V., Athias, A., Perrier, V., Villard, V., Lagrost, L., Verdier, J.-M., & Maurice, T. (2013). Increased amyloid-β peptide-induced memory deficits in phospholipid transfer protein (pltp) gene knockout mice. Neuropsychopharmacology, 38, 817–825.
- Devi, L., Prabhu, B. M., Galati, D. F., Avadhani, N. G., & Anandatheerthavarada, H. K. (2006). Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. The Journal of Neuroscience, 26(35), 9057–9068.
- Dheen, S. T., Jun, Y., Yan, Z., Tay, S. S., & Ang Ling, E. (2005). Retinoic acid inhibits expression of TNF-alpha and iNOS in activated rat microglia. Glia, 50(1), 21–31.
- Ding, Y., Qiao, A., Wang, Z., Goodwin, J. S., Lee, E. S., Block, M. L., Allsbrook, M., MP, M. D., & Fan, G. H. (2008). Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer's disease transgenic mouse model. The Journal of Neuroscience, 28(45), 11622–11634.
- Dong, Y., Xu, M., Kalueff, A. V., & Song, C. (2018). Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1β administration. European Journal of Nutrition, 57(5), 1781–1791.
- Du, S., Readel, E., Wey, M., & Armstrong, D. W. (2020). Complete identification of all 20 relevant epimeric peptides in β-amyloid: A new HPLC-MS based analytical strategy for Alzheimer's research. Chemical Communications, 56(10), 1537–1540.
- Duchaine, C. S., Talbot, D., Nafti, M., Giguère, Y., Dodin, S., Tourigny, A., Carmichael, P.-H., & Laurin, D. (2020). Vitamin D status, cognitive decline and incident dementia: The Canadian study of health and aging. Canadian Journal of Public Health, 111, 312–321.
- Dumont, M., Kipiani, K., Yu, F., Wille, E., Katz, M., Calingasan, N. Y., Gouras, G. K., Lin, M. T., & Beal, M. F. (2011). Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer's disease. Journal of Alzheimer's Disease, 27(1), 211–223.
- Dysken, M. W., Sano, M., Asthana, S., Vertrees, J. E., Pallaki, M., Llorente, M., Love, S., Schellenberg, G. D., McCarten, J. R., Malphurs, J., & Prieto, S. (2014). Effect of vitamin E and memantine on functional decline in Alzheimer disease. JAMA, 311, 33–44.
- Egea, J., Martín-de-Saavedra, M. D., Parada, E., Romero, A., Del Barrio, L., Rosa, A. O., Garcia, A. G., & López, M. G. (2012). Galantamine elicits neuroprotection by inhibiting iNOS, NADPH oxidase and ROS in hippocampal slices stressed with anoxia/reoxygenation. Neuropharmacology, 62(2), 1082–1090.
- Erb, M., Huber, M., Robert, C. A. M., Ferrieri, A. P., Machado, R. A., & Arce, C. C. (2013). Chapter two—The role of plant primary and secondary metabolites in root-herbivore behaviour, nutrition and physiology. In S. N. Johnson, I. Hiltpold, & T. C. J. Turlings (Eds.), Advances in insect physiology (Vol. 45, pp. 53–95). Academic Press.
10.1016/B978-0-12-417165-7.00002-7 Google Scholar
- Esposito, G., de Filippis, D., Carnuccio, R., Izzo, A. A., & Iuvone, T. (2006). The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells. Journal of Molecular Medicine (Berlin, Germany), 84, 253–258.
- Esposito, G., Scuderi, C., Savani, C., Steardo, L., Jr., de Filippis, D., Cottone, P., Iuvone, T., Cuomo, V., & Steardo, L. (2007). Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. British Journal of Pharmacology, 151, 1272–1279.
- Falinska, A. M., Colmbo, C. B., Irina, A. G., Mark, G., & John, L. H. (2011). The role of omega 3-fatty acid in brain function and ameliorating Alzheimer's disease: Opportunities for biotechnology in the development of nutraceuticals. Biocatalysis and Agricultural Biotechnology, 1, 159–166.
- Fang, F., Chen, X., Huang, T., Luddy, J. S., & Yan, S. S. (2012). Multi-faced neuroprotective effects of ginsenoside Rg1 in an Alzheimer mouse model. Biochimica et Biophysica Acta, 1822, 286–292.
- Farkhondeh, T., Pourbagher-Shahri, A., Ashrafizadeh, M., Folgado, S. L., Rajabpour-Sanati, A., Khazdair, M. R., & Samarghandian, S. (2020). Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regeneration Research, 15(10), 1792–1798.
- Farkhondeh, T., & Samarghandian, S. (2016). Antidotal effects of curcumin against agents-induced cardiovascular toxicity. Cardiovascular & Hematological Disorders Drug Targets, 16(1), 30–37.
- Farkhondeh, T., Samarghandian, S., Shahri, A. M. P., & Samini, F. (2018). The neuroprotective effects of thymoquinone: A review. Dose-response, 16(2), 1559325818761455.
- Figueiredo, C. P., Bicca, M. A., Latini, A., Prediger, R. D. S., Medeiros, R., & Calixto, J. B. (2011). Folic acid plus α-tocopherol mitigates amyloid-β-induced neurotoxicity through modulation of mitochondrial complexes activity. Journal of Alzheimer's Disease, 24, 61–75.
- Frank, J., Fukagawa, N. K., Bilia, A. R., Johnson, E. J., Kwon, O., Prakash, V., Miyazawa, T., Clifford, M. N., Kay, C. D., Crozier, A., & Erdman, J. W., Jr. (2020). Terms and nomenclature used for plant-derived components in nutrition and related research: Efforts toward harmonization. Nutrition Reviews, 78(6), 451–458.
- Freund Levi, Y., Vedin, I., Cederholm, T., Basun, H., Irving, G. F., Eriksdotter, M., Hjorth, E., Schultzberg, M., Vessby, B., Wahlund, L. O., & Salem, N. (2014). Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer's disease: The OmegAD study. Journal of Internal Medicine, 275(4), 428–436.
- Garcia-Alloza, M., Dodwell, S. A., Meyer-Luehmann, M., Hyman, B. T., & Bacskai, B. J. (2006). Plaque-derived oxidative stress mediates distorted neurite trajectories in the alzheimer mouse model. Journal of Neuropathology and Experimental Neurology, 65, 1082–1089.
- Georgiou, N. A., Garssen, J., & Witkamp, R. F. (2011). Pharma-nutrition interface: The gap is narrowing. European Journal of Pharmacology, 651, 1–8.
- Ghahghaei, A., Bathaie, S. Z., Kheirkhah, H., & Bahraminejad, E. (2013). The protective effect of crocin on the amyloid fibril formation of Aβ42 peptide in vitro. Cellular & Molecular Biology Letters, 18(3), 328–339.
- Ghofrani, S., Joghataei, M.-T., Mohseni, S., Baluchnejadmojarad, T., Bagheri, M., Khamse, S., & Roghani, M. (2015). Naringenin improves learning and memory in an Alzheimer's disease rat model: Insights into the underlying mechanisms. European Journal of Pharmacology, 764, 195–201.
- Grimm, M. O., Kuchenbecker, J., Grösgen, S., Burg, V. K., Hundsdörfer, B., Rothhaar, T. L., Friess, P., de Wilde, M. C., Broersen, L. M., Penke, B., & Péter, M. (2011). Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. The Journal of Biological Chemistry, 286(16), 14028–14039.
- Gul, K., Singh, A. K., & Jabeen, R. (2016). Nutraceuticals and functional foods: The foods for the future world. Critical Reviews in Food Science and Nutrition, 56(16), 2617–2627.
- Guo, H., Cao, H., Cui, X., Zheng, W., Wang, S., Yu, J., & Chen, Z. (2019). Silymarin's inhibition and treatment effects for Alzheimer's disease. Molecules, 24(9), 1748.
- Guo, T., Zhang, D., Zeng, Y., Huang, T. Y., Xu, H., & Zhao, Y. (2020). Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Molecular Neurodegeneration, 15(1), 40.
- Hatziagapiou, K., Kakouri, E., Lambrou, G. I., Bethanis, K., & Tarantilis, P. A. (2019). Antioxidant properties of crocus sativus L. and its constituents and relevance to neurodegenerative diseases; focus on Alzheimer's and Parkinson's disease. Current Neuropharmacology, 17(4), 377–402.
- Honarpisheh, P., Reynolds, C. R., Blasco Conesa, M. P., Moruno Manchon, J. F., Putluri, N., Bhattacharjee, M. B., Urayama, A., McCullough, L. D., & Ganesh, B. P. (2020). Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-beta in tg2576 mice. International Journal of Molecular Sciences, 21, 1711.
- Hook, V., Yoon, M., Mosier, C., Ito, G., Podvin, S., Head, B. P., Rissman, R., O'Donoghue, A. J., & Hook, G. (2020). Cathepsin B in neurodegeneration of Alzheimer's disease, traumatic brain injury, and related brain disorders. Biochimica Et Biophysica Acta Proteins and Proteomics, 1868(8), 140428.
- Hossain, M. F., Uddin, M. S., Uddin, G. M. S., Sumsuzzman, D. M., Islam, M., Barreto, G. E., Mathew, B., & Ashraf, G. M. (2019). Melatonin in Alzheimer's disease: A latent endogenous regulator of neurogenesis to mitigate Alzheimer's neuropathology. Molecular Neurobiology, 56(12), 8255–8276.
- Hosseinkhani, A., Sahragard, A., Namdari, A., & Zarshenas, M. M. (2017). Botanical sources for Alzheimer's: A review on reports from traditional Persian medicine. American Journal of Alzheimer's Disease & Other Dementias, 32(7), 429–437.
- Howes, M. R., Perry, N. S. L., Vásquez-Londoño, C., & Perry, E. K. (2020). Role of phytochemicals as nutraceuticals for cognitive functions affected in ageing. British Journal of Pharmacology, 177(6), 1294–1315.
- Hu, Y. Y., Huang, M., Dong, X. Q., Xu, Q. P., Yu, W. H., & Zhang, Z. Y. (2011). Ginkgolide B reduces neuronal cell apoptosis in the hemorrhagic rat brain: Possible involvement of toll-like receptor 4/nuclear factor-kappa B pathway. Journal of Ethnopharmacology, 137, 1462–1468.
- Hussain, G., Zhang, L., Rasul, A., Anwar, H., Sohail, M. U., Razzaq, A., Aziz, N., Shabbir, A., Ali, M., & Sun, T. (2018). Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer's and Parkinson's diseases: An update of recent data. Molecules, 23(4), 814.
- Iqbal, K., Liu, F., Gong, C. X., & Grundke-Iqbal, I. (2010). Tau in Alzheimer disease and related tauopathies. Current Alzheimer Research, 7(8), 656–664.
- Jung, U. J., & Kim, S. R. (2018). Beneficial effects of flavonoids against Parkinson's disease. Journal of Medicinal Food, 21(5), 421–432.
- Katalinić, M., Rusak, G., Domaćinović Barović, J., Šinko, G., Jelić, D., Antolović, R., & Kovarik, Z. (2010). Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. European Journal of Medicinal Chemistry, 45(1), 186–192.
- Kennedy, D. O., Scholey, A. B., & Wesnes, K. A. (2001). Dose dependent changes in cognitive performance and mood following acute administration of ginseng to healthy young volunteers. Nutritional Neuroscience, 4, 295–310.
- Kennedy, D. O., & Wightman, E. L. (2011). Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Advances in Nutrition, 2(1), 32–50.
- Kim, H., Bang, O. Y., Jung, M. W., Ha, S. D., Hong, H. S., Huh, K., Kim, S. U., & Mook-Jung, I. (2001). Neuroprotective effects of estrogen against beta-amyloid toxicity are mediated by estrogen receptors in cultured neuronal cells. Neuroscience Letters, 302(1), 58–62.
- Kim, J. W., Byun, M. S., Yi, D., Lee, J. H., Jeon, S. Y., Jung, G., Lee, H. N., Sohn, B. K., Lee, J. Y., Kim, Y. K., & Shin, S. A. (2019). Coffee intake and decreased amyloid pathology in human brain. Translational Psychiatry, 9(1), 270.
- Kivipelto, M., Mangialasche, F., & Ngandu, T. (2018). Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nature Reviews Neurology, 14(11), 653–666.
- Kobayashi, K., Nakano, H., Hayashi, M., Shimazaki, M., Fukutani, Y., Sasaki, K., Sugimori, K., & Koshino, Y. (2003). Association of phosphorylation site of tau protein with neuronal apoptosis in Alzheimer's disease. Journal of the Neurological Sciences, 208(1), 17–24.
- Kouhestani, S., Jafari, A., & Babaei, P. (2018). Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regeneration Research, 13(10), 1827–1832.
- Kwon, Y. (2017). Luteolin as a potential preventive and therapeutic candidate for Alzheimer's disease. Experimental Gerontology, 95, 39–43.
- Lane, M. A., & Bailey, S. J. (2005). Role of retinoid signalling in the adult brain. Progress in Neurobiology, 75, 275–293.
- Lange, K. W., Guo, J., Kanaya, S., Lange, K. M., Nakamura, Y., & Li, S. (2019). Medical foods in Alzheimer's disease. Food Science and Human Wellness, 8(1), 1–7.
10.1016/j.fshw.2019.02.002 Google Scholar
- Lanoiselée, H. M., Nicolas, G., Wallon, D., Rovelet-Lecrux, A., Lacour, M., Rousseau, S., Richard, A. C., Pasquier, F., Rollin-Sillaire, A., Martinaud, O., & Quillard-Muraine, M. (2017). APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Medicine, 14(3), e1002270.
- Larson, E. B., Yaffe, K., & Langa, K. M. (2013). New insights into the dementia epidemic. The New England journal of medicine, 369, 2275–2277.
- Li, P., Marshall, L., Oh, G., Jakubowski, J. L., Groot, D., He, Y., Wang, T., Petronis, A., & Labrie, V. (2019). Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer's disease pathology and cognitive symptoms. Nature Communications, 10(1), 2246.
- Li, W., Guo, J., Shen, Y., Huang, L., Leng, B., Fan, D., Shui, L., & Chen, C. (2020). Probiotics, prebiotics, and synbiotics for the treatment of dementia: Protocol for a systematic review. Medicine (Baltimore), 99(5), e18608.
- Liang, W., Ge, S., Yang, L., Yang, M., Ye, Z., Yan, M., Du, J., & Luo, Z. (2010). Ginsenosides Rb1 and Rg1 promote proliferation and expression of neurotrophic factors in primary Schwann cell cultures. Brain Research, 1357, 19–25.
- Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. The Journal of Neuroscience, 21(21), 8370–8377.
- Liu, Z. Q., Luo, X. Y., Liu, G. Z., Chen, Y. P., Wang, Z. C., & Sun, Y. X. (2003). In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes. Journal of Agricultural and Food Chemistry, 51, 2555–2558.
- Löffler, T., Flunkert, S., Temmel, M., & Hutter-Paier, B. (2016). Decreased plasma Aβ in hyperlipidemic APPSL transgenic mice is associated with BBB dysfunction. Frontiers in Neuroscience, 10, 232.
- Magrone, T., Magrone, M., Russo, M. A., & Jirillo, E. (2020). Peripheral immunosenescence and central neuroinflammation: A dangerous liaison. A dietary approach. Endocr Metab immune Disord drug Targets, 20(9), 1391–1411.
- Maia, L., & De Mendonca, A. (2002). Does caffeine intake protect from Alzheimer's disease? European Journal of Neurology, 9(4), 377–382.
- Mancuso, C., Siciliano, R., Barone, E., & Preziosi, P. (2012). Natural substances and Alzheimer's disease: From preclinical studies to evidence based medicine. Biochimica et Biophysica Acta, 1822(5), 616–624.
- Manczak, M., Anekonda, T. S., Henson, E., Park, B. S., Quinn, J., & Reddy, P. H. (2006). Mitochondria are a direct site of a beta accumulation in Alzheimer's disease neurons: Implications for free radical generation and oxidative damage in disease progression. Human Molecular Genetics, 15(9), 1437–1449.
- Manoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M., & Akbar, M. D. (2016). The role of reactive oxygen species in the pathogenesis of Alzheimer's disease, Parkinson's disease, and Huntington's disease: A mini review. Oxidative Medicine and Cellular Longevity, 2016, 8590578.
- Marianna, M., Giuseppe, M., Gianandrea, T., Bria, P., & Mazza, S. (2010). Primary cerebral blood flow deficiency and Alzheimer's disease: Sadows and lights. Journal of Alzheimer's Disease, 23, 375–389.
- Martin Moreno, A. M., Brera, B., Spuch, C., Carro, E., Garcia-Garcia, L., Delgado, M., Pozo, M. A., Innamorato, N. G., Cuadrado, A., & de Ceballos, M. L. (2012). Prolonged oral cannabinoid administration prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in Tg APP 2576 mice. Journal of Neuroinflammation, 9, 8.
- Martin-Moreno, A. M., Reigada, D., Ramirez, B. G., Mechoulam, R., Innamorato, N., Cuadrado, A., & de Ceballos, M. L. (2011). Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: Relevance to Alzheimer's disease. Molecular Pharmacology, 79, 964–973.
- Matsui, T., Ingelsson, M., Fukumoto, H., et al. (2007). Expression of APP pathway mRNAs and proteins in Alzheimer's disease. Brain Research, 1161, 116–123.
- Mattson, M. P. (2004). Pathways towards and away from Alzheimer's disease. Nature, 430(7000), 631–639.
- McClam, T. D., Marano, C. M., Rosenberg, P. B., & Lyketsos, C. G. (2015 Sep-Oct). Interventions for neuropsychiatric symptoms in neurocognitive impairment due to Alzheimer's disease: A review of the literature. Harvard Review of Psychiatry, 23(5), 377–393.
- Mecocci, P., & Polidori, M. C. (2012). Antioxidant clinical trials in mild cognitive impairment and Alzheimer's disease. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1822, 631–638.
- Mecocci, P., Tinarelli, C., Schulz, R. J., & Polidori, M. C. (2014). Nutraceuticals in cognitive impairment and Alzheimer's disease. Frontiers in Pharmacology, 5, 147.
- Morales, I., Guzmán-Martínez, L., Cerda-Troncoso, C., Farías, G. A., & Maccioni, R. B. (2014). Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Frontiers in Cellular Neuroscience, 8, 112.
- Mori, T., Koyama, N., Tan, J., Segawa, T., Maeda, M., & Town, T. (2019). Combined treatment with the phenolics (−)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice. The Journal of Biological Chemistry, 294(8), 2714–2731.
- Mozaffarian, D., & Wu, J. H. Y. (2018). Flavonoids, dairy foods, and cardiovascular and metabolic health: A review of emerging biologic pathways. Circulation Research, 122(2), 369–384.
- Niculescu, A. B., Le-Niculescu, H., Roseberry, K., Wang, S., Hart, J., Kaur, A., Robertson, H., Jones, T., Strasburger, A., Williams, A., & Kurian, S. M. (2020). Blood biomarkers for memory: Toward early detection of risk for Alzheimer disease, pharmacogenomics, and repurposed drugs. Molecular Psychiatry, 25(8), 1651–1672.
- Oboh, G., Ademosun, A. O., Ogunsuyi, O. B., Oyedola, E. T., Olasehinde, T. A., & Oyeleye, S. I. (2018). In vitro anticholinesterase, antimonoamine oxidase and antioxidant properties of alkaloid extracts from kola nuts (Cola acuminata and Cola nitida). Journal of Complementary and Integrative Medicine, 16(1). https://doi.org/10.1515/jcim-2016-0155
10.1515/jcim?2016?0155 Google Scholar
- O'Brien, R. J., & Wong, P. C. (2011). Amyloid precursor protein processing and Alzheimer's disease. Annual Review of Neuroscience, 34(1), 185–204.
- Olajide, O., & Sarker, S. (2020). Alzheimer's disease: Natural products as inhibitors of neuroinflammation. Inflammopharmacology, 28(6), 1439–1455.
- Olasehinde, T. A., Olaniran, A. O., & Okoh, A. I. (2020). Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of Chlorococcum sp. extracts. Journal of Food Biochemistry., 27, e13395.
- Omar, S. H. (2017). Biophenols pharmacology against the amyloidogenic activity in Alzheimer's disease. Biomedicine & Pharmacotherapy, 89, 396–413.
- Osadebe, P., Odoh, U., & Uzor, P. (2014). Natural products as potential sources of antidiabetic drugs. Brazilian Journal of Pharmaceutical Sciences, 4(17), 2075–2095.
- Pan, S. J., Kuo, C. H., Lam, K. P., Chu, Y. T., Wang, W. L., & Hung, C. H. (2010 Jun). Probiotics and allergy in children–An update review. Pediatric Allergy and Immunology, 21(4 Pt 2), e659–e566.
- Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47.
- Pandareesh, M. D., Kandikattu, H. K., Razack, S., Amruta, N., Choudhari, R., Vikram, A., & Doddapattar, P. (2018). Nutrition and nutraceuticals in neuroinflammatory and brain metabolic stress: Implications for neurodegenerative disorders. CNS & Neurological Disorders Drug Targets, 17(9), 680–688.
- Pardeshi, R., Bolshette, N., Gadhave, K., Ahire, A., Ahmed, S., Cassano, T., Gupta, V. B., & Lahkar, M. (2017). Insulin signaling: An opportunistic target to minify the risk of Alzheimer's disease. Psychoneuroendocrinology, 83, 159–171.
- Patel, D. K., Prasad, S. K., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2(4), 320–330.
- Péneau, S., Galan, P., Jeandel, C., Ferry, M., Andreeva, V., Hercberg, S., Kesse-Guyot, E., & The SUVI MAX 2 research group. (2011). Fruit and vegetable intake and cognitive function in the SU.VI.MAX 2 prospective study. The American Journal of Clinical Nutrition, 94, 1295–1303.
- Perez Ortiz, J. M., & Swerdlow, R. H. (2019). Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. British Journal of Pharmacology, 176(18), 3489–3507.
- Pérez-Gálvez, A., Jarén-Galán, M., Garrido-Fernández, J., Calvo, M. V., Visioli, F., & Fontecha, J. (2018). Activities, bioavailability, and metabolism of lipids from structural membranes and oils: Promising research on mild cognitive impairment. Pharmacological Research, 134, 299–304.
- Phillips, M. C. (2014). Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life, 66(9), 616–623.
- Pietta, P.-G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035–1042.
- Pitsikas, N., Zisopoulou, S., Tarantilis, P. A., Kanakis, C. D., Polissiou, M. G., & Sakellaridis, N. (2007). Effects of the active constituents of Crocus sativus L., crocins on recognition and spatial rats' memory. Behavioural Brain Research, 183(2), 141–146.
- Pluta, R., Ułamek-Kozioł, M., Januszewski, S., & Czuczwar, S. J. (2020). Gut microbiota and pro/prebiotics in Alzheimer's disease. Aging (Albany NY), 12(6), 5539–5550.
- Poddar, J., Pradhan, M., Ganguly, G., et al. (2019). Biochemical deficits and cognitive decline in brain aging: Intervention by dietary supplements. Journal of Chemical Neuroanatomy, 95, 70–80.
- Polidori, M. C., Praticó, D., Mangialasche, F., Mariani, E., Aust, O., Anlasik, T., Mang, N., Pientka, L., Stahl, W., Sies, H., & Mecocci, P. (2009). High fruit and vegetable intake is positively correlated with antioxidant status and cognitive performance in healthy subjects. Journal of Alzheimer's Disease, 17, 921–927.
- Prakash, V., & van Boekel, M. A. (2010). Nutraceuticals: Possible future ingredients and food safety aspects. In Ensuring global food safety (pp. 333–338). Academic Press.
10.1016/B978-0-12-374845-4.00019-9 Google Scholar
- Qu, M., Jiang, Z., Liao, Y., Song, Z., & Nan, X. (2016). Lycopene prevents amyloid [Beta]-induced mitochondrial oxidative stress and dysfunctions in cultured rat cortical neurons. Neurochemical Research, 41(6), 1354–1364.
- Querfurth, H. W., & LaFerla, F. M. (2010). Alzheimer's disease. The New England Journal of Medicine, 362(4), 329–344.
- Raji, C. A., Lopez, O. L., Kuller, L. H., Carmichael, O. T., & Becker, J. T. (2009). Age, Alzheimer disease, and brain structure. Neurology, 73(22), 1899–1905.
- Ramirez, B. G., Blazquez, C., Gomez del Pulgar, T., Guzman, M., & de Ceballos, M. L. (2005). Prevention of Alzheimer's disease pathology by cannabinoids: Neuroprotection mediated by blockade of microglial activation. The Journal of Neuroscience, 25, 1904–1913.
- Ravi, S. K., Narasingappa, R. B., & Vincent, B. (2019). Neuro-nutrients as anti-alzheimer's disease agents: A critical review. Critical Reviews in Food Science and Nutrition, 59(18), 2999–3018.
- Reay, J. L., Scholey, A. B., & Kennedy, D. O. (2010). Panax ginseng (G115) improves aspects of working memory performance and subjective ratings of calmness in healthy young adults. Human Psychopharmacology, 25, 462–471.
- Rehman, M. U., Wali, A. F., Ahmad, A., Shakeel, S., Rasool, S., Ali, R., Rashid, S. M., Madkhali, H., Ganaie, M. A., & Khan, R. (2019). Neuroprotective strategies for neurological disorders by natural products: An update. Current Neuropharmacology, 17(3), 247–267.
- Rezai-Zadeh, K., Arendash, G. W., Hou, H., Fernandez, F., Jensen, M., Runfeldt, M., Shytle, R. D., & Tan, J. (2008). Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Research, 1214, 177–187.
- Riedel, W. J. (2014). Preventing cognitive decline in preclinical Alzheimer's disease. Current Opinion in Pharmacology, 14, 18–22.
- Robinson, N., Grabowski, P., & Rehman, I. (2018). Alzheimer's disease pathogenesis: Is there a role for folate? Mechanisms of Ageing and Development, 174, 86–94.
- Rodríguez-García, C., Sánchez-Quesada, C., & Gaforio, J. J. (2019). Dietary flavonoids as cancer Chemopreventive agents: An updated review of human studies. Antioxidants, 8(5), 137.
- Sachdeva, A. K., & Chopra, K. (2015). Lycopene abrogates Aβ(1-42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer's disease. The Journal of Nutritional Biochemistry, 26(7), 736–744.
- Sachdeva AK, Kuhad A, Chopra K. Naringin ameliorates memory deficits in experimental paradigm of Alzheimer's disease by attenuating mitochondrial dysfunction. Pharmacology, Biochemistry, and Behavior 2014; 127: 101–110.
- Samarghandian, S., Azimi-Nezhad, M., Borji, A., & Farkhondeh, T. (2016). Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state. Phytotherapy Research, 30(8), 1345–1353.
- Samarghandian, S., Borji, A., & Tabasi, S. H. (2013). Effects of Cichorium intybus Linn on blood glucose, lipid constituents and selected oxidative stress parameters in streptozotocin-induced diabetic rats. Cardiovascular & Hematological Disorders Drug Targets, 13(3), 231–236.
- Sawikr, Y., Yarla, N. S., Peluso, I., Kamal, M. A., Aliev, G., & Bishayee, A. (2017). Neuroinflammation in Alzheimer's disease: The preventive and therapeutic potential of polyphenolic nutraceuticals. Advances in Protein Chemistry and Structural Biology, 108, 33–57.
- Sawmiller, D., Habib, A., Li, S., Darlington, D., Hou, H., Tian, J., Shytle, R. D., Smith, A., Giunta, B., Mori, T., & Tan, J. (2016). Diosmin reduces cerebral Aβ levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. Journal of Neuroimmunology, 299, 98–106.
- Scheltens, P., Blennow, K., Breteler, M. M. B., de Strooper, B., Frisoni, G. B., Salloway, S., & Van der Flier, W. M. (2016). Alzheimer's disease. The Lancet, 388(10043), 505–517.
- Schneider, L. S., Mangialasche, F., Andreasen, N., Feldman, H., Giacobini, E., Jones, R., Mantua, V., Mecocci, P., Pani, L., Winblad, B., & Kivipelto, M. (2014). Clinical trials and late–stage drug development for Alzheimer's disease: An appraisal from 1984 to 2014. Journal of Internal Medicine, 275(3), 251–283.
- Schroeter, H., Boyd, C., Spencer, J. P., Williams, R. J., Cadenas, E., & Rice-Evans, C. (2002). MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide. Neurobiology of Aging, 23(5), 861–880.
- Scott, L. J., & Goa, K. L. (2000). Galantamine: A review of its use in Alzheimer's disease. Drugs, 60(5), 1095–1122.
- Serra, D., Almeida, L. M., & Dinis, T. C. P. (2020). Polyphenols in the management of brain disorders: Modulation of the microbiota-gut-brain axis. Advances in Food and Nutrition Research, 91, 1–27.
- Shahar, S., Lee, L. K., Rajab, N., Lim, C. L., Harun, N. A., Noh, M. F. N. M., Then, S.-M., & Jamal, R. (2013). Association between vitamin a, vitamin E and apolipoprotein E status with mild cognitive impairment among elderly people in low-cost residential areas. Nutritional Neuroscience, 16, 6–12.
- Sharman, M. J., Gyengesi, E., Liang, H., Chatterjee, P., Karl, T., Li, Q. X., Wenk, M. R., Halliwell, B., Martins, R. N., & Münch, G. (2019). Assessment of diets containing curcumin, epigallocatechin-3-gallate, docosahexaenoic acid and α-lipoic acid on amyloid load and inflammation in a male transgenic mouse model of Alzheimer's disease: Are combinations more effective? Neurobiology of Disease, 124, 505–519.
- Shi, Y. Q., Huang, T. W., Chen, L. M., Pan, X. D., Zhang, J., Zhu, Y. G., & Chen, X. C. (2010). Ginsenoside Rg1 attenuates amyloid-beta content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. Journal of Alzheimer's Disease, 19, 977–989.
- Shimmyo, Y., Kihara, T., Akaike, A., Niidome, T., & Sugimoto, H. (2008). Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport, 19(13), 1329–1333.
- Simunkova, M., Alwasel, S. H., Alhazza, I. M., Jomova, K., Kollar, V., Rusko, M., & Valko, M. (2019). Management of oxidative stress and other pathologies in Alzheimer's disease. Archives of Toxicology, 93(9), 2491–2513.
- Singh, J. C. H., Kakalij, R. M., Kshirsagar, R. P., Kumar, B. H., Komakula, S. S. B., & Diwan, P. V. (2014). Cognitive effects of vanillic acid against streptozotocin-induced neurodegeneration in mice. Pharmaceutical Biology, 53(5), 1–7. https://doi.org/10.3109/13880209.2014.935866
- Smith, P. J., & Blumenthal, J. (2016). Dietary factors and cognitive decline. The Journal of Prevention of Alzheimer's Disease, 3, 53–64.
- Soares, H. D., Potter, W. Z., Pickering, E., Kuhn, M., Immermann, F. W., Shera, D. M., Ferm, M., Dean, R. A., Simon, A. J., Swenson, F., & Siuciak, J. A. (2012). Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Archives of Neurology, 69(10), 1310–1317.
- Sodhi, R. K., & Singh, N. (2014). Retinoids as potential targets for Alzheimer's disease. Pharmacology, Biochemistry, and Behavior, 120, 117–123.
- Sonee, M., Sum, T., Wang, C., & Mukherjee, S. K. (2004). The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology, 25(5), 885–891.
- Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research/Fundamental and Molecular mechanisms of mutagenesis, 579(1), 200–213.
- Spencer, J. P. E., Kuhnle, G. G. C., Williams, R. J., & Rice-Evans, C. (2003). Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. The Biochemical Journal, 372(Pt 1), 173–181.
- Sullivan, A., & Nord, C. E. (2005). Probiotics and gastrointestinal diseases. Journal of Internal Medicine, 257(1), 78–92.
- Sung, S., Yao, Y., Uryu, K., Yang, H., Lee, V. M., Trojanowski, J. Q., & Pratico, D. (2004). Early vitamin E supplementation in young but not aged mice reduces abeta levels and amyloid deposition in a transgenic model of Alzheimer's disease. The FASEB Journal, 18, 323–325.
- Takuma, K., Yao, J., Huang, J., Xu, H., Chen, X., Luddy, J., Trillat, A. C., Stern, D. M., Arancio, O., & Yan, S. S. (2005). ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. The FASEB Journal, 19(6), 597–598.
- Talebi, M., Talebi, M., Farkhondeh, T., & Samarghandian, S. (2020a). Molecular mechanism-based therapeutic properties of honey. Biomedicine & Pharmacotherapy, 130, 110590.
- Talebi, M., Talebi, M., Farkhondeh, T., & Samarghandian, S. (2020b). Biological and therapeutic activities of thymoquinone: Focus on the Nrf2 signaling pathway. Phytotherapy Research, 35(4), 1739–1753.
- Talebi, M., Talebi, M., & Samarghandian, S. (2021). Association of Crocus sativus with cognitive dysfunctions and Alzheimer's disease: A systematic review. Biointerface Research in Applied Chemistry, 11(1), 7468–7492.
- Talebi, M., Zarshenas, M., & Yazdani, E. (2020). Preparation and evaluation of possible antioxidant activities of rose traditional tablet" [Qurs- e-Vard]" a selected traditional Persian medicine [TPM] formulation via various procedures. Current Drug Discovery Technologies, 17. https://doi.org/10.2174/1570163817666200929114517
10.2174/1570163817666200929114517 Google Scholar
- Taram, F., Ignowski, E., Duval, N., & Linseman, D. A. (2018). Neuroprotection comparison of Rosmarinic acid and Carnosic acid in primary cultures of cerebellar granule neurons. Molecules, 23(11), 2956.
- Tarantilis, P. A., Tsoupras, G., & Polissiou, M. (1995). Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. Journal of Chromatography. A, 699(1–2), 107–118.
- Tiribuzi, R., Crispoltoni, L., Chiurchiù, V., Casella, A., Montecchiani, C., Del Pino, A. M., Maccarrone, M., Palmerini, C. A., Caltagirone, C., Kawarai, T., & Orlacchio, A. (2017). Trans-crocetin improves amyloid-β degradation in monocytes from Alzheimer's disease patients. Journal of the Neurological Sciences, 372, 408–412.
- Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., & Nair, M. (2019). Alzheimer's disease: Pathogenesis, diagnostics, and therapeutics. International Journal of Nanomedicine, 14, 5541–5554.
- Ton, A. M. M., Campagnaro, B. P., Alves, G. A., Aires, R., Côco, L. Z., Arpini, C. M., Guerra e Oliveira, T., Campos-Toimil, M., Meyrelles, S. S., Pereira, T. M., & Vasquez, E. C. (2020). Oxidative stress and dementia in Alzheimer's patients: Effects of synbiotic supplementation. Oxidative Medicine and Cellular Longevity, 2020, 2638703.
- Uddin, M. S., Hossain, M., Mamun, A., Shah, M. A., Hasana, S., Bulbul, I. J., Sarwar, M. S., Mansouri, R. A., Ashraf, G. M., Rauf, A., & Abdel-Daim, M. M. (2020). Exploring the multimodal role of phytochemicals in the modulation of cellular signaling pathways to combat age-related neurodegeneration. Science of The Total Environment, 725, 138313.
- Van Cauwenberghe, C., Van Broeckhoven, C., & Sleegers, K. (2016). The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genetics in Medicine, 18(5), 421–430.
- Van Der Lee, S. J., Wolters, F. J., Ikram, M. K., Hofman, A., Ikram, M. A., Amin, N., & van Duijn, C. M. (2018). The effect of APOE and other common genetic variants on the onset of Alzheimer's disease and dementia: A community-based cohort study. Lancet Neurology, 17(5), 434–444.
- Vasquez, E. C., Aires, R., Ton, A. M. M., & Amorim, F. G. (2020). New insights on the beneficial effects of the probiotic kefir on vascular dysfunction in cardiovascular and neurodegenerative diseases. Current Pharmaceutical Design, 26(30), 3700–3710.
- Vincent, B. (2018). Protective roles of melatonin against the amyloid-dependent development of Alzheimer's disease: A critical review. Pharmacological Research, 134, 223–237.
- Waheed Janabi, A. H., Kamboh, A. A., Saeed, M., Xiaoyu, L., BiBi, J., Majeed, F., Naveed, M., Mughal, M. J., Korejo, N. A., Kamboh, R., & Alagawany, M. (2020). Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases. Iranian Journal of Basic Medical Sciences, 23(2), 140–153.
- Wang, R., Tu, J., Zhang, Q., Zhang, X., Zhu, Y., Ma, W., Cheng, C., Brann, D. W., & Yang, F. (2013). Genistein attenuates ischemic oxidative damage and behavioral deficits via eNOS/Nrf2/HO-1 signaling. Hippocampus, 23(7), 634–647.
- Weidner, W. S., & Barbarino, P. (2019). The STATE of the art of dementia research: New frontiers. Alzheimer's & Dementia, 15, 1473.
10.1016/j.jalz.2019.06.4115 Google Scholar
- Willem, M., Tahirovic, S., Busche, M. A., Ovsepian, S. V., Chafai, M., Kootar, S., Hornburg, D., Evans, L. D., Moore, S., Daria, A., & Hampel, H. (2015). η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 526(7573), 443–447.
- Williams, R. J., Mohanakumar, K. P., & Beart, P. M. (2015). Neuro-nutraceuticals: The path to brain health via nourishment is not so distant. Neurochemistry International, 89, 1–6.
- Winblad, B., Amouyel, P., Andrieu, S., Ballard, C., Brayne, C., Brodaty, H., Cedazo-Minguez, A., Dubois, B., Edvardsson, D., Feldman, H., & Fratiglioni, L. (2016). Defeating Alzheimer's disease and other dementias: A priority for European science and society. The Lancet Neurology, 15(5), 455–532.
- Xiao, Q., Wang, C., Li, J., Hou, Q., Ma, J., Wang, W., & Wang, Z. (2010). Ginkgolide B protects hippocampal neurons from apoptosis induced by beta-amyloid 25-35 partly via up-regulation of brain-derived neurotrophic factor. European Journal of Pharmacology, 647, 48–54.
- Xiao, X. Q., Zhang, H. Y., & Tang, X. C. (2002). Huperzine a attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. Journal of Neuroscience Research, 67(1), 30–36.
- Yamada, K., Tanaka, T., Han, D., Senzaki, K., Kameyama, T., & Nabeshima, T. (1999). Protective effects of idebenone and alpha-tocopherol on α-amyloid-(1–42)-induced learning and memory deficits in rats: Implication of oxidative stress in β-amyloid-induced neurotoxicity in vivo. The European Journal of Neuroscience, 11, 83–90.
- Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C. C., & Bu, G. (2019). Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nature Reviews. Neurology, 15(9), 501–518.
- Yang, G., Wang, Y., Tian, J., & Liu, J. P. (2013). Huperzine a for Alzheimer's disease: A systematic review and meta-analysis of randomized clinical trials. PLoS One, 8(9), e74916.
- Yang, X., Dai, G., Li, G., & Yang, E. S. (2010). Coenzyme Q10 reduces beta-amyloid plaque in an APP/PS1 transgenic mouse model of Alzheimer's disease. Journal of Molecular Neuroscience, 41(1), 110–113.
- Youdim, K. A., Dobbie, M. S., Kuhnle, G., Proteggente, A. R., Abbott, N. J., & Rice-Evans, C. (2003). Interaction between flavonoids and the blood–brain barrier: In vitro studies. Journal of Neurochemistry, 85(1), 180–192.
- Young, J., Wahle, K. W., & Boyle, S. P. (2008). Cytoprotective effects of phenolic antioxidants and essential fatty acids in human blood monocyte and neuroblastoma cell lines: Surrogates for neurological damage in vivo. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 78(1), 45–59.
- Yu, G., Li, Y., Tian, Q., Liu, R., Wang, Q., Wang, J. Z., & Wang, X. (2011). Berberine attenuates calyculin A-induced cytotoxicity and tau hyperphosphorylation in HEK293 cells. Journal of Alzheimer's Disease, 24(3), 525–535.
- Yuan, C., Fondell, E., Ascherio, A., Okereke, O. I., Grodstein, F., Hofman, A., & Willett, W. C. (2020). Long-term intake of dietary carotenoids is positively associated with late-life subjective cognitive function in a prospective study in U.S. women. The Journal of nutrition, 150, 1871–1879.
- Yun, T. K., Lee, Y. S., Lee, Y. H., Kim, S. I., & Yun, H. Y. (2001). Anticarcinogenic effect of Panax ginseng C.a. Meyer and identification of active compounds. Journal of Korean Medical Science, 16, S6–S18.
- Zhang, J., Wang, Y., Dong, X., & Liu, J. (2018). Crocetin attenuates inflammation and amyloid-β accumulation in APPsw transgenic mice. Immunity & Ageing, 15(1), 24.
- Zhao, S., Zhang, L., Yang, C., Li, Z., & Rong, S. (2019). Procyanidins and Alzheimer's disease. Molecular Neurobiology, 56(8), 5556–5567.
- Zhao, Y., & Zhao, B. (2013). Oxidative stress and the pathogenesis of Alzheimer's disease. Oxidative Medicine and Cellular Longevity, 2013, 316523.
- Zhao, Z., Nelson, A. R., Betsholtz, C., & Zlokovic, B. V. (2015). Establishment and dysfunction of the blood-brain barrier. Cell, 163(5), 1064–1078.
- Zhuang, Z. Q., Shen, L. L., Li, W. W., Fu, X., Zeng, F., Gui, L., Lü, Y., Cai, M., Zhu, C., Tan, Y. L., & Zheng, P. (2018). Gut microbiota is altered in patients with Alzheimer's disease. Journal of Alzheimer's Disease, 63(4), 1337–1346.
- Zlokovic, B. V. (2011). Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nature Reviews Neuroscience, 12(12), 723–738.