Gongronema latifolium leaf extract protects against dexamethasone-induced myocardial cell injury via cardiac oxido-inflammatory molecules modulation
Idara Asuquo Okon
Department of Physiology, PAMO University of Medical Sciences, Port Harcourt, Nigeria
Search for more papers by this authorJustin Atiang Beshel
Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
Search for more papers by this authorVictor Udo Nna
Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
Search for more papers by this authorCorresponding Author
Daniel Udofia Owu
Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
Correspondence
Daniel Udofia Owu, Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria.
Email: [email protected]
Search for more papers by this authorIdara Asuquo Okon
Department of Physiology, PAMO University of Medical Sciences, Port Harcourt, Nigeria
Search for more papers by this authorJustin Atiang Beshel
Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
Search for more papers by this authorVictor Udo Nna
Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
Search for more papers by this authorCorresponding Author
Daniel Udofia Owu
Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
Correspondence
Daniel Udofia Owu, Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria.
Email: [email protected]
Search for more papers by this authorAbstract
The use of glucocorticoids in the treatment of inflammatory disorders can result in myocardial injury. This study was carried out to investigate the protective effects of ethanolic leaf extract of Gongronema latifolium (GL) in dexamethasone (DEX)-induced myocardial injury. Wistar rats were assigned to 4 groups (n = 6) namely, control, GL, DEX, and DEX+GL groups. DEX (35 μg/kg body weight) was administered subcutaneously to induce myocardial injury, while GL leaf extract (200 mg/kg body weight) was administered orally. Both agents were administered to their respective groups for 14 days. DEX (p < .05) decreased nitric oxide and increased angiotensin-converting enzyme activity compared with the control. Serum superoxide dismutase activity and bilirubin level were decreased (p < .05), while malondialdehyde level was increased (p < .05) in the DEX group. Serum liver enzymes, inflammatory biomarkers (C-reactive protein and interleukin-6), and cardiac injury biomarkers (creatinine kinase, cardiac troponin-T, and lactate dehydrogenase) were significantly (p < .05) increased in the DEX group relative to the control. Administration of GL leaf extract attenuated these changes significantly. The study therefore suggests that GL is beneficial in the treatment of myocardial injury via the downregulation of high serum concentration of cardiac biomarkers, oxidative stress markers, and inflammatory biomarkers released as a result of the insult caused by glucocorticoid administration.
Practical applications
- In this study, we demonstrated that prolonged use of dexamethasone resulted in myocardial cell injury via increased production of reactive oxygen species, inflammatory biomarkers, and inhibition of nitric oxide, a potent vasodilator.
- The leaves extract of Gongronema latifolium elicits the anti-inflammatory and cardioprotective potential as an efficient inhibitor of free radicals with good antioxidant properties.
- The study provides scientific evidence of the therapeutic ability of the extract of G. latifolium in the treatment of DEX-induced myocardial injury and could be a drug candidate for the treatment of myocardial injury and inflammation in humans.
CONFLICT OF INTEREST
The authors declared that they have no conflict of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Adegbenro, A. A., Salawu, S. O., & Akindahunsi, A. A. (2021). Antioxidant activities of Celosia argentea Linn and Gongronema latifolium Benth and the antihyperlipidemic effect of the vegetable supplemented diets on fat induced hyperlipidemic rats. Journal of Food Measurement and Characterization, 15(1), 425–436. https://doi.org/10.1007/s11694-020-00612-z
- Adeyemi-Doro, A. A., Salawu, S. O., & Akindahunsi, A. A. (2022). Effects of Gongronema latifolium Benth and Celosia argentea Linn supplemented diet on the hepatic and cardiac functions of high-fat diet-induced hyperlipidemic rats. Nutrition & Food Science, 52(3), 534–546. https://doi.org/10.1108/NFS-03-2021-0099
- Ajiboye, B. O., Oyinloye, B. E., Agboinghale, P. E., Onikanni, S. A., Asogwa, E., & Kappo, A. P. (2019). Antihyperglycaemia and related gene expressions of aqueous extract of Gongronema latifolium leaf in alloxan-induced diabetic rats. Pharmaceutical Biology, 57(1), 604–611. https://doi.org/10.1080/13880209.2019.1657907
- Al-Harbi, N. O., Imam, F., Al-Harbi, M. M., Ansari, M. A., Zoheir, K. M., Korashy, H. M., … Ahmad, S. F. (2016). Dexamethasone attenuates LPS-induced acute lung injury through inhibition of NF-κB, COX-2, and pro-inflammatory mediators. Immunological Investigations, 45(4), 349–369. https://doi.org/10.3109/08820139.2016.1157814
- Alp, N. J., & Channon, K. M. (2004). Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arteriosclerosis, Thrombosis and Vascular Biology, 24(3), 413–420. https://doi.org/10.1161/01.ATV.0000110785.96039.f6
- Asl, S. Z., Ghasemi, A., & Azizi, F. (2008). Serum nitric oxide metabolites in subjects with metabolic syndrome. Clinical Biochemistry, 41(16), 1342–1347. https://doi.org/10.1016/j.clinbiochem.2008.08.076
- Babensee, J. E. (2020). Inflammation, wound healing, the foreign-body response, and alternative tissue responses. In W. R. Wagner, S. E. Sakiyama-Elbert, G. Zhang, M. J. Yaszemski, & J. E. Lemons (Eds.), Biomaterials science ( 4th ed., pp. 737–746). Academic Press. https://doi.org/10.1016/B978-0-12-816137-1.00048-9
10.1016/B978-0-12-816137-1.00048-9 Google Scholar
- Badmus, O. O., Sabinari, I. W., & Olatunji, L. A. (2020). Dexamethasone increases renal free fatty acids and xanthine oxidase activity in female rats: Could there be any gestational impact? Drug and Chemical Toxicology., 26, 1–2. https://doi.org/10.1080/01480545.2020.1784190
- Balogun, M. E., Besong, E. E., Obimma, J. N., Mbamalu, O. S., & Djobissie, S. F. A. (2016). Gongronema latifolium: A phytochemical, nutritional and pharmacological review. Journal of Physiology and Pharmacology Advances, 6(1), 811–824. https://doi.org/10.5455/jppa.1969123104000
- Bertinchant, J. P., Robert, E., Polge, A., Marty-Double, C., Fabbro-Peray, P., Poirey, S., Aya, G., Juan, J. M., Ledermann, B., De la Coussaye, J. E., & Dauzat, M. (2000). Comparison of the diagnostic value of cardiac troponin I and T determinations for detecting early myocardial damage and the relationship with histological findings after isoprenaline-induced cardiac injury in rats. Clinica Chimica Acta, 298(1–2), 13–28. https://doi.org/10.1016/S0009-8981(00)00223-0
- Beshel, J. A., Palacios, J., Beshel, F. N., Nku, C. O., Owu, D. U., Nwokocha, M., Bórquez, J., Simirgiotis, M. J., & Nwokocha, C. R. (2019). Blood pressure-reducing activity of Gongronema latifolium Benth (Apocynaeceae) and the identification of its main phytochemicals by UHPLC Q-Orbitrap mass spectrometry. Journal of Basic and Clinical Physiology and Pharmacology, 31(1), 20180178. https://doi.org/10.1515/jbcpp-2018-0178
10.1515/jbcpp?2018?0178 Google Scholar
- Chen, C., Yu, L. T., Cheng, B. R., Xu, J. L., Cai, Y., Jin, J. L., Feng, R. L., Xie, L., Qu, X. Y., Li, D., Liu, J., Li, Y., Cui, X. Y., Lu, J. J., Zhou, K., Lin, Q., & Wan, J. (2022). Promising therapeutic candidate for myocardial ischemia/reperfusion injury: What are the possible mechanisms and roles of phytochemicals? Frontiers in Cardiovascular Medicine, 8, 792592. https://doi.org/10.3389/fcvm.2021.792592
- Chruvattil, R., Banerjee, S., Nath, S., Machhi, J., Kharkwal, G., Yadav, M. R., & Gupta, S. (2017). Dexamethasone alters the appetite regulation via induction of hypothalamic insulin resistance in rat brain. Molecular Neurobiology, 54(9), 7483–7496. https://doi.org/10.1007/s12035-016-0251-2
- Clayton, R. N., Raskauskiene, D., Reulen, R. C., & Jones, P. W. (2011). Mortality and morbidity in Cushing's disease over 50 years in Stoke-on-Trent, UK: Audit and meta-analysis of literature. Journal of Clinical Endocrinology and Metabolism, 96, 632–642. https://doi.org/10.1210/jc.2010-1942
- Costello, R. E., Yimer, B. B., Roads, P., Jani, M., & Dixon, W. G. (2021). Glucocorticoid use is associated with an increased risk of hypertension. Rheumatology, 60(1), 132–139. https://doi.org/10.1093/rheumatology/keaa209
- Danese, E., & Montagnana, M. (2016). An historical approach to the diagnostic biomarkers of acute coronary syndrome. Annals of Translational Medicine, 4(10), 194. https://doi.org/10.21037/atm.2016.05.19
- Dang, R., Guo, Y., Zhang, L., Chen, L., Yang, R., & Jiang, P. (2016). Chronic stress and excessive glucocorticoid exposure both lead to altered neuregulin-1/ErbB signaling in rat myocardium. Steroids, 112, 47–53. https://doi.org/10.1016/j.steroids.2016.04.011
- de Salvi Guimarães, F., de Moraes, W. M. A. M., Bozi, L. H. M., Souza, P. R., Antonio, E. L., Bocalini, D. S., Tucci, P. J. F., Ribeiro, D. A., Brum, P. C., & Medeiros, A. (2017). DEXamethasone-induced cardiac deterioration is associated with both calcium handling abnormalities and calcineurin signaling pathway activation. Molecular and Cellular Biochemistry, 424(1), 87–98. https://doi.org/10.1007/s11010-016-2846-3
- Edet, E. E., Akpanabiatu, M. I., Uboh, F. E., Edet, T. E., Eno, A. E., Itam, E. H., & Umoh, I. B. (2011). Gongronema latifolium crude leaf extract reverses alterations in hematological indices and weight loss in diabetic rats. J Pharmacol Toxicol, 6(2), 174–181. https://doi.org/10.3923/jpt.2011.174.181.
10.3923/jpt.2011.174.181 Google Scholar
- El-Marasy, S. A., El Awdan, S. A., Hassan, A., & Abdallah, H. M. (2020). Cardioprotective effect of thymol against adrenaline-induced myocardial injury in rats. Heliyon, 6(7), e04431. https://doi.org/10.1016/j.heliyon.2020.e04431
- Ezeonwu, V. U., & Dahiru, D. (2013). Protective effect of bi-herbal formulation of Ocimum gratissimum and Gongronema latifolium aqueous leaf extracts on acetaminophen-induced hepato-nephrotoxicity in rats. American Journal of Biochemistry, 3(1), 18–23. https://doi.org/10.5923/j.ajb.20130301.03
10.5923/j.ajb.20130301.03 Google Scholar
- Förstermann, U. (2010). Nitric oxide and oxidative stress in vascular disease. Pflügers Archiv, 459(6), 923–939. https://doi.org/10.1007/s00424-010-0808-2
- Fukai, T., & Ushio-Fukai, M. (2011). Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxidants and Redox Signaling, 15(6), 1583–1606. https://doi.org/10.1089/ars.2011.3999
- Gao, R., Yuan, Z., Zhao, Z., & Gao, X. (1998). Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity. Bioelectrochemistry and Bioenergetics, 45(1), 41–45. https://doi.org/10.1016/S0302-4598(98)00072-5
- Go, A. S., Mozaffarian, D., Roger, V. L., Benjamin, E. J., Berry, J. D., Blaha, M. J., Dai, S., Ford, E. S., Fox, C. S., Franco, S., & Fullerton, H. J. (2014). Heart disease and stroke statistics update: A report from the American Heart Association. Circulation, 129(3), e28–e92. https://doi.org/10.1161/01.cir.0000441139.02102.80
- Imo, C., Uhegbu, F. O., Glory, I. N., & Azubuike, N. C. (2015). Histological and hepatoprotective effect of ethanolic leaf extract of Gongronema latifolium Benth in acetaminophen-induced hepatic toxicity in male albino rats. International Journal of Preventive Medicine, 1(4), 217–226. http://www.aiscience.org/journal/ijpmr
- Jagannathan, R., Patel, S. A., Ali, M. K., & Narayan, K. V. (2019). Global updates on cardiovascular disease mortality trends and attribution of traditional risk factors. Current Diabetes Reports, 19, 1–2. https://doi.org/10.1007/s11892-019-1161-2
- Johnkennedy, N., & Adamma, E. (2011). The protective role of Gongronema latifolium in acetaminophen induced hepatic toxicity in Wistar rats. Asian Pacific Journal of Tropical Biomedicine, 1(2), S151–S154. https://doi.org/10.1016/S2221-1691(11)60145-7
10.1016/S2221?1691(11)60145?7 Google Scholar
- Korashy, H. M., Attafi, I. M., Ansari, M. A., Assiri, M. A., Belali, O. M., Ahmad, S. F., Al-Alallah, I. A., Al Anazi, F. E., Alhaider, A. A. (2016). Molecular mechanisms of cardiotoxicity of gefitinib in vivo and in vitro rat cardiomyocyte: Role of apoptosis and oxidative stress. Toxicology Letters, 252, 50–61. https://doi.org/10.1016/j.toxlet.2016.04.011
- Korhonen, R., Lahti, A., Hämäläinen, M., Kankaanranta, H., & Moilanen, E. (2002). Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages. Molecular Pharmacology, 62(3), 698–704. https://doi.org/10.1124/mol.62.3.698
- Kotha, P., Marella, S., Allagadda, R., Badri, K. R., & Chippada, A. R. (2019). Evaluation of biochemical mechanisms of anti-diabetic functions of Anisomeles malabarica. Biomedicine and Pharmacotherapy, 112, 108598. https://doi.org/10.1016/j.biopha.2019.01.059
- Koul, A., Kaur, J., & Chugh, N. A. (2021). Protective potential of lycopene enriched tomato extract against dexamethasone induced hepatic and renal damage in mice. Asian Journal of Biochemistry, 8(3), 1–23. https://doi.org/10.9734/AJRB/2021/v8i330180
10.9734/AJRB/2021/v8i330180 Google Scholar
- Macedo, F. N., de Souza, D. S., dos Santos Araujo, J. E., Dantas, C. O., Miguel-dos-Santos, R., Silva-Filha, E., Rabelo, T. K., dos Santos, R. V., Zhang, R., Barreto, A. S., & de Vasconcelos, C. M. (2020). NOX-dependent reactive oxygen species production underlies arrhythmias susceptibility in dexamethasone-treated rats. Free Radical Biology and Medicine., 20(152), 1–7. https://doi.org/10.1016/j.freeradbiomed.2020.03.005
- Mandarim-de-Lacerda, C. A., & Pereira, L. M. M. (2000). Numerical density of cardiomyocytes in chronic nitric oxide synthesis inhibition. Pathobiology, 68, 36–42. https://doi.org/10.1159/000028113
- Mohammed, A. T., & Ismail, H. T. H. (2017). Hematological, biochemical, and histopathological impacts of barium chloride and barium carbonate accumulation in soft tissues of male Sprague-Dawley rats. Environmental Science and Pollution Research, 1–12, 26634–26645. https://doi.org/10.1007/s11356-017-0282-x
10.1007/s11356?017?0282?x Google Scholar
- Montezano, A. C., & Touyz, R. M. (2012). Molecular mechanisms of hypertension, reactive oxygen species and antioxidants: A basic science update for the clinician. Canadian Journal of Cardiology, 28(3), 288–295. https://doi.org/10.1016/j.cjca.2012.01.017
- Nadeem, A., Ahmad, S. F., al-Harbi, N. O., Ibrahim, K. E., Sarawi, W., Attia, S. M., Alasmari, A. F., Alqarni, S. A., Alfradan, A. S., Bakheet, S. A., & al-Harbi, M. M. (2021). Role of ITK signaling in acute kidney injury in mice: Amelioration of acute kidney injury associated clinical parameters and attenuation of inflammatory transcription factor signaling in CD4+ T cells by ITK inhibition. International Immunopharmacology, 99, 108028. https://doi.org/10.1016/j.intimp.2021.108028
- Nadeem, A., Ahmad, S. F., Al-Harbi, N. O., Siddiqui, N., Ibrahim, K. E., & Attia, S. M. (2018). Inhibition of BET bromodomains restores corticosteroid responsiveness in a mixed granulocytic mouse model of asthma. Biochemical Pharmacology, 154, 222–233. https://doi.org/10.1016/j.bcp.2018.05.011
- N'Guetta, R., Yao, H., Ekou, A., N'Cho-Mottoh, M. P., Angoran, I., Tano, M., Konin, C., Coulibaly, I., Anzouan-Kacou, J. B., Seka, R., & Adoh, A. M. (2016). Prevalence and characteristics of acute coronary syndromes in a sub-Saharan Africa population. In Annales de Cardiologie et d'angeiologie, 65, 59–63. https://doi.org/10.1016/j.ancard.2016.01.001
- Ogunyemi, O. M., Gyebi, A. G., Adebayo, J. O., Oguntola, J. A., & Olaiya, C. O. (2020). Marsectohexol and other pregnane phytochemicals derived from Gongronema latifolium as α-amylase and α-glucosidase inhibitors: In vitro and molecular docking studies. SN Applied Sciences, 2(12), 1–11. https://doi.org/10.1007/s42452-020-03951-0
- Okesola, M. A., Ojo, O. A., Onikanni, S. A., Ajiboye, B. O., Oyinloye, B. E., Agboinghale, P. E., & Kappo, A. P. (2020). Ameliorative effect of Gongronema latifolium leaf extract on alloxan-induced diabetic cardiomyopathy in Wistar rat model. Comparative Clinical Pathology, 29(4), 865–872. https://doi.org/10.1007/s00580-020-03134-8
- Okoko, T., & Silas-Olu, D. I. (2021). In-vitro anti-lipid peroxidation and other antioxidant potentials of Gongronema latifolium leaf extract. Asian Journal of Research in Biochemistry, 8(1), 35–41. https://doi.org/10.9734/ajrb/2021/v8i130172
10.9734/ajrb/2021/v8i130172 Google Scholar
- Okon, I. A., Ufot, U. F., Onoyeraye, U. G., Nwachukwu, E. O., & Owu, D. U. (2019). Effect of Gongronema latifolium on lipid profile, oral glucose tolerance test and some hematological parameters in fructose-induced hyperglycemia in rats. Pharmaceutical and Biomedical Research, 5(1), 25–31. https://doi.org/10.18502/pbr.v5i1.762
- Reagan, W. J., Yang, R. Z., Park, S., Goldstein, R., Brees, D., & Gong, D. W. (2012). Metabolic adaptive ALT isoenzyme response in livers of C57/BL6 mice treated with dexamethasone. Toxicologic Pathology, 40(8), 1117–1127. https://doi.org/10.1177/0192623312447550
- Recommendation of German Society of Clinical Chemistry. (1972). Optimised standard colorimetric methods. Journal of Clinical Chemistry and Clinical Biochemistry, 10, 182.
- Reitman, S., & Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxaloacetate and glutamic transaminases. American Journal of Clinical Pathology, 28, 56–63.
- Safaeian, L., & Zabolian, H. (2014). Antioxidant effects of bovine lactoferrin on dexamethasone-induced hypertension in rat. ISRN Pharmacology, 2014, 943523. https://doi.org/10.1155/2014/943523
- Schäfer, S. C., Wallerath, T., Closs, E. I., Schmidt, C., Schwarz, P. M., Förstermann, U., & Lehr, H. A. (2005). Dexamethasone suppresses eNOS and CAT-1 and induces oxidative stress in mouse resistance arterioles. American Journal of Physiology-Heart and Circulatory Physiology, 288(1), H436–H444. https://doi.org/10.1152/ajpheart.00587.2004
- Serafini, M., Peluso, I., & Raguzzini, A. (2010). Flavonoids as anti-inflammatory agents. Proceedings of the Nutrition Society, 69(3), 273–278. https://doi.org/10.1017/S002966511000162X
- Showande, S. J., Fakeye, T. O., Kajula, M., Hokkanen, J., & Tolonen, A. (2019). Potential inhibition of major human cytochrome P450 isoenzymes by selected tropical medicinal herbs—Implication for herb–drug interactions. Food Science & Nutrition, 7(1), 44–55. https://doi.org/10.1002/fsn3.789
- Subramanyam, D., Gurunathan, D., Gaayathri, R., & Priya, V. V. (2018). Comparative evaluation of salivary malondialdehyde levels as a marker of lipid peroxidation in early childhood caries. European Journal of Dentistry, 12(1), 67–70. https://doi.org/10.4103/ejd.ejd_266_17
- Toda, S., & Shirataki, Y. (2006). Inhibitory effect of prenylated flavonoid in Euchresta japonica. and Artocarpus heterophyllus on lipid peroxidation by interaction of hemoglobin and hydrogen peroxide. Pharmaceutical Biology, 44(4), 271–273. https://doi.org/10.1080/13880200600714095
- Ujong, G. O., Beshel, J. A., Nkanu, E., Ubana, O. P., & Ofem, O. E. (2022). Ethanolic extract of Gongronema latifolium improves learning and memory in Swiss albino mice. Journal of Drug Delivery and Therapeutics, 12(1), 45–50. https://doi.org/10.22270/jddt.v12i1.5276
10.22270/jddt.v12i1.5276 Google Scholar
- World Health Organization. (2021). Fact sheets on cardiovascular diseases. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
- Würzburg, U., Hennrich, N., Lang, H., Prellwitz, W., Neumeier, D., & Knedel, M. (1976). Determination of creatine kinase-MB in serum using inhibiting antibodies (author's transl). Klinische Wochenschrift, 54(8), 357–360. https://doi.org/10.1007/bf01469790
- Zhang, Y., Zhao, Q., Li, X., & Ji, F. (2021). Dexmedetomidine reversed hypoxia/reoxygenation injury-induced oxidative stress and endoplasmic reticulum stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway. Molecular and Cellular Biochemistry, 476(7), 2803–2812. https://doi.org/10.1007/s11010-021-04102-8
- Zhao, T., Wu, W., Sui, L., Huang, Q., Nan, Y., Liu, J., & Ai, K. (2022). Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioactive Material, 1(7), 47–72. https://doi.org/10.1016/j.bioactmat.2021.06.006