Phytochemical characterization of Morus nigra fruit ultrasound-assisted ethanolic extract for its cardioprotective potential
Maria Maqsood
National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Search for more papers by this authorCorresponding Author
Muhammad Issa Khan
National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Correspondence
Muhammad Issa Khan, National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
Email: [email protected]
Search for more papers by this authorMian Kamran Sharif
National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Search for more papers by this authorMuhammad Naeem Faisal
Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
Search for more papers by this authorMaria Maqsood
National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Search for more papers by this authorCorresponding Author
Muhammad Issa Khan
National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Correspondence
Muhammad Issa Khan, National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
Email: [email protected]
Search for more papers by this authorMian Kamran Sharif
National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
Search for more papers by this authorMuhammad Naeem Faisal
Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
Search for more papers by this authorAbstract
The current work investigated the phytochemical profile of ultrasound-assisted ethanolic extract of Morus nigra (M. nigra) fruit. FTIR analysis of M. nigra fruit extract revealed the presence of alcohols (O-H), alkanes (C-H stretch), alkenes (C=C), and alkynes (C≡C). The HPLC analysis quantified the quercetin, gallic acid, vanillic acid, chlorogenic acid, syringic acid, cinnamic acid, sinapic acid, and kaempferol. Furthermore, the cardioprotective activity of ethanolic extract of M. nigra fruit was investigated. Cholesterol supplementation (2%) in the daily diet and exposure to cigarette smoke (2 cigarettes twice a day) were to induce hypertension in rats. The experimental animals were categorized into four groups: G0 (negative control), G1 (positive control), G2 (standard drug), and G3 (M. nigra fruit). The fruit extract administration at 300 mg/kg BW/day orally for 2 months significantly (p < .001) enhanced the activities of serum and cardiac tissue antioxidants in hypertensive rats. Meanwhile, the fruit extract reduced the elevated serum lipid profile while significantly increasing the high-density lipoproteins in G3 than G1 and G2. The increase in blood pressure, liver transaminases, and serum lactate dehydrogenase also reduced significantly in M. nigra fruit extract-treated rats. Histopathological findings revealed mild normalization of cardiac myocytes with central nuclei, branching, and cross-striations. Consequently, the M. nigra fruit extract exerted the cardioprotective potential via increasing the antioxidant enzymes and reducing the lipids, lactate dehydrogenase, liver transaminases, and blood pressure. The therapeutic potential of M. nigra fruit can be due to flavonols and phenolic acids.
Practical applications
The present work quantified the Morus nigra fruit phytochemicals and its significant role in reducing lipid markers and blood pressure and improving antioxidant status in rats fed a hypercholesterolemic diet and exposed to cigarette smoke. Conclusively, the inclusion of M. nigra fruit in daily diet could improve the cardiac health of the individuals. Furthermore, the therapeutic potential of M. nigra fruit and its isolated constituents in modulating the gene expression against cardiac problems can explore after clinical trials and standardization in higher animals.
CONFLICT OF INTEREST
The authors declared that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Abdulazeez, J., Olusegun, A. J., Tanko, Y., Abubakar, A., Bello, U. M., Ahmed, M. K., & Aliyu, M. (2019). Serum liver enzymes and oxidative stress biomarkers in resveratrol treated cholesterol diet induced type 2 diabetes mellitus in rabbits. The FASEB Journal, 33(S1), 694–691.
10.1096/fasebj.2019.33.1_supplement.694.1 Google Scholar
- Abukhalil, M. H., Hussein, O. E., Bin-Jumah, M., Saghir, S. A., Germoush, M. O., Elgebaly, H. A., Mosa, N. M., Hamad, I., Qarmush, M. M., Hassanein, E. M., & Kamel, E. M. (2020). Farnesol attenuates oxidative stress and liver injury and modulates fatty acid synthase and acetyl-CoA carboxylase in high cholesterol-fed rats. Environmental Science and Pollution Research, 27(24), 30118–30132.
- Aly, A. A., Ali, H. G., & Eliwa, N. E. (2019). Phytochemical screening, anthocyanins and antimicrobial activities in some berries fruits. Journal of Food Measurement and Characterization, 13(2), 911–920.
- Arfan, M., Khan, R., Rybarczyk, A., & Amarowicz, R. (2012). Antioxidant activity of mulberry fruit extracts. International Journal of Molecular Sciences, 13(2), 2472–2480.
- Aybastier, Ö. (2021). Isolation and determination of antioxidant compounds from black mulberry (Morus nigra L.) by chromatographic methods. Food, 46(1), 32–41.
- Bao, T., Li, Y., Xie, J., Jia, Z., & Chen, W. (2019). Systematic evaluation of polyphenols composition and antioxidant activity of mulberry cultivars subjected to gastrointestinal digestion and gut microbiota fermentation. Journal of Functional Foods, 58, 338–349.
- Bertke, E. M., & Atkins, J. H. (1964). Effect of Centruroides sculpturatus venom upon rat tissue: A histopathologic study. Toxicon, 2(3), 205–209.
- Bibi, R., Salma, U., Bashir, K., Khan, T., & Shah, A. J. (2021). Antihypertensive activity of Sauromatum guttatum mediated by vasorelaxation and myocardial depressant effects. Arquivos Brasileiros de Cardiologia, 117, 1093–1103.
- Budiman, A., Praditasari, A., Rahayu, D., & Aulifa, D. L. (2019). Formulation of antioxidant gel from black mulberry fruit extract (Morus nigra L.). Journal of Pharmacy and Bioallied Sciences, 11(3), 216–222.
- Budiman, A., Sofian, F. F., Santi, N. M. W., & Aulifa, D. L. (2020). The formulation of lozenge using black mulberries (Morus nigra L.) leaf extract as an α-glucosidase inhibitor. Journal of Pharmacy & Bioallied Sciences, 12(2), 171–176.
- Burstein, M., Scholnick, H., & Morfin, R. (1970). Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. Journal of Lipid Research, 11(6), 583–595.
- Cao, Y., Jiang, W., Bai, H., Li, J., Zhu, H., Xu, L., Li, Y., Li, K., Tang, H., Duan, W., & Wang, S. (2021). Study on active components of mulberry leaf for the prevention and treatment of cardiovascular complications of diabetes. Journal of Functional Foods, 83, 1–12.
- Chaiwong, S., Chatturong, U., Chanasong, R., Deetud, W., To-On, K., Puntheeranurak, S., Chulikorn, E., Kajsongkram, T., Raksanoh, V., Chinda, K., Limpeanchob, N., Trisat, K., Somran, J., Nuengchamnong, N., Prajumwong, P., & Chootip, K. (2021). Dried mulberry fruit ameliorates cardiovascular and liver histopathological changes in high-fat diet-induced hyperlipidemic mice. Journal of Traditional and Complementary Medicine, 11(4), 356–368.
- Chen, H., Hansen, M. J., Jones, J. E., Vlahos, R., Anderson, G. P., & Morris, M. J. (2007). Detrimental metabolic effects of combining long-term cigarette smoke exposure and high-fat diet in mice. American Journal of Physiology-Endocrinology and Metabolism, 293(6), E1564–E1571.
- Chen, L., Chen, X.-W., Huang, X., Song, B.-L., Wang, Y., & Wang, Y. (2019). Regulation of glucose and lipid metabolism in health and disease. Science China Life Sciences, 62(11), 1420–1458.
- Cho, S. M. J., Lee, H. J., Shim, J. S., Song, B. M., & Kim, H. C. (2020). Associations between age and dyslipidemia are differed by education level: The cardiovascular and metabolic diseases etiology research center (CMERC) cohort. Lipids in Health and Disease, 19(1), 1–12.
- Chung, M.-Y., Kim, H.-J., Choi, H.-K., Park, J. H., & Hwang, J.-T. (2021). Black mulberry extract elicits hepatoprotective effects in nonalcoholic fatty liver disease models by inhibition of histone acetylation. Journal of Medicinal Food, 24(9), 978–986.
- Crook, M. (2006). Clinical chemistry and metabolic medicine ( 7th ed.). Hodder Arnold.
- de Pádua Lúcio, K., Rabelo, A. C. S., Araújo, C. M., Brandão, G. C., de Souza, G. H. B., da Silva, R. G., de Souza, D. M. S., Talvani, A., Bezerra, F. S., Cruz Calsavara, A. J., & Costa, D. C. (2018). Anti-inflammatory and antioxidant properties of black mulberry (Morus nigra L.) in a model of LPS-induced sepsis. Oxidative Medicine and Cellular Longevity, 2018, 1–13.
- Deniz, G. Y., Laloglu, E., Koc, K., Nadaroglu, H., & Geyikoglu, F. (2018). The effect of black mulberry (Morus nigra) extract on carbon tetrachloride-induced liver damage. Archives of Biological Sciences, 70(2), 371–378.
- Diab, K. A., Fahmy, M. A., Hassan, E. M., Hassan, Z. M., Omara, E. A., & Abdel-Samie, N. S. (2020). Inhibitory activity of black mulberry (Morus nigra) extract against testicular, liver and kidney toxicity induced by paracetamol in mice. Molecular Biology Reports, 47(3), 1733–1749.
- do Nascimento, L. C. P., Neto, J. P. R. C., de Andrade Braga, V., Lagranha, C. J., & de Brito Alves, J. L. J. (2020). Maternal exposure to high-fat and high-cholesterol diet induces arterial hypertension and oxidative stress along the gut-kidney axis in rat offspring. Life Sciences, 261, 1–8.
- Dubois-Deruy, E., Peugnet, V., Turkieh, A., & Pinet, F. (2020). Oxidative stress in cardiovascular diseases. Antioxidants, 9(9), 864.
- Elmasry, S., & Moawad, M. (2021). The hepatoprotective effect of gooseberry and black mulberry extracts against carbon tetrachloride-induced liver injury in rats. The Journal of Basic and Applied Zoology, 82(1), 1–11.
10.1186/s41936-021-00224-z Google Scholar
- Erden, Y. (2021). Sour black mulberry (Morus nigra L.) causes cell death by decreasing mutant p53 expression in HT-29 human colon cancer cells. Food Bioscience, 42, 1–7.
- Farhana, A., & Lappin, S. L. (2021). Biochemistry, lactate dehydrogenase. StatPearls Publishing.
- Feng, Y., Xiong, Y., Qiao, T., Li, X., Jia, L., & Han, Y. (2018). Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Medicine, 7(12), 6124–6136.
- Gianazza, E., Brioschi, M., Martinez Fernandez, A., Casalnuovo, F., Altomare, A., Aldini, G., & Banfi, C. (2021). Lipid peroxidation in atherosclerotic cardiovascular diseases. Antioxidants & Redox Signaling, 34(1), 49–98.
- Gungor, N., & Sengul, M. (2008). Antioxidant activity, total phenolic content and selected physicochemical properties of white mulberry (Morus alba L.) fruits. International Journal of Food Properties, 11(1), 44–52.
- Hago, S., Mahrous, E. A., Moawad, M., Abdel-Wahab, S., & Abdel-Sattar, E. (2021). Evaluation of antidiabetic activity of Morus nigra L. and Bauhinia variegata L. leaves as Egyptian remedies used for the treatment of diabetes. Natural Product Research, 35(5), 829–835.
- Hogade, M., & Kuthar, S. (2021). Hepatoprotective activity of Morus alba (Linn). Leaves extract against paracetamol induced hepatotoxicity in rats. African Journal of Pharmacy and Pharmacology, 8(3), 124–128.
- Hu, D., Bao, T., Lu, Y., Su, H., Ke, H., & Chen, W. (2019). Polysaccharide from mulberry fruit (Morus alba L.) protects against palmitic-acid-induced hepatocyte lipotoxicity by activating the Nrf2/ARE signaling pathway. Journal of Agricultural and Food Chemistry, 68(46), 13016–13024.
- Hu, D., Xu, Y., Xie, J., Sun, C., Zheng, X., & Chen, W. (2018). Systematic evaluation of phenolic compounds and protective capacity of a new mulberry cultivar J33 against palmitic acid-induced lipotoxicity using a simulated digestion method. Food Chemistry, 258, 43–50.
- Jia, Y.-N., Peng, Y.-L., Zhao, Y.-P., Cheng, X.-F., Zhou, Y., Chai, C.-L., Zeng, L. S., Pan, M. H., & Xu, L. (2019). Comparison of the hepatoprotective effects of the three main stilbenes from mulberry twigs. Journal of Agricultural and Food Chemistry, 67(19), 5521–5529.
- Jiang, Y., Dai, M., Nie, W.-J., Yang, X.-R., & Zeng, X.-C. (2017). Effects of the ethanol extract of black mulberry (Morus nigra L.) fruit on experimental atherosclerosis in rats. Journal of Ethnopharmacology, 200, 228–235.
- Khyade, V. B., Pawar, S. S., & Khyade, R. V. (2018). Oxidative stress reducing capabilities of moracin, the novel compound from the fruits of mulberry, Morus alba (L) in hydrogen peroxide induced stress in skin fibroblast cell line culture (AH927). International Journal of Scientific Studies, 6(1), 1–14.
- Kim, M., Nam, D.-G., Ju, W.-T., Choe, J.-S., & Choi, A.-J. (2020). Response surface methodology for optimization of process parameters and antioxidant properties of mulberry (Morus alba L.) leaves by extrusion. Molecules, 25(22), 5231.
- King, J. (1965). The transferases-alanine and aspartate transaminases. In D. Van (Ed.), Practical clinical enzymology (pp. 121–138). Nostrand Co. Ltd.
- Lee, E., Lee, M.-S., Chang, E., Kim, C.-T., Choi, A.-J., Kim, I.-H., & Kim, Y. (2021). High hydrostatic pressure extract of mulberry leaves ameliorates hypercholesterolemia via modulating hepatic microRNA-33 expression and AMPK activity in high cholesterol diet fed rats. Food & Nutrition Research, 65, 1–10.
- Lee, G.-H., Jung, E.-S., Jung, S.-J., Chae, S.-W., & Chae, H.-J. (2019). Mulberry extract attenuates endothelial dysfunction through the regulation of uncoupling endothelial nitric oxide synthase in high fat diet rats. Nutrients, 11(5), 978.
- Lee, H. Y., Oh, M. R., Jung, E. S., Lee, Y. S., Kim, D. S., Kang, S. S., Chae, H. J., & Chae, S. W. (2017). Mulberry and its main components protect against oxidized low-density lipoprotein-induced endothelial nitric oxide synthase uncoupling. Journal of Functional Foods, 29, 295–302.
- Lee, J., Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88(5), 1269–1278.
- Lee, M. R., Kim, J. E., Choi, J. Y., Park, J. J., Kim, H. R., Song, B. R., Choi, Y. W., Kim, K. M., Song, H., & Hwang, D. Y. (2019). Anti-obesity effect in high-fat-diet-induced obese C57BL/6 mice: Study of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris. Experimental and Therapeutic Medicine, 17(3), 2185–2193.
- Lee, M. R., Kim, J. E., Park, J. W., Kang, M. J., Choi, H. J., Bae, S. J., Choi, Y. W., Kim, K. M., Hong, J. T., & Hwang, D. Y. (2020). Fermented mulberry (Morus alba) leaves suppress high fat diet-induced hepatic steatosis through amelioration of the inflammatory response and autophagy pathway. BMC Complementary Medicine and Therapies, 20(1), 1–17.
- Lee, M. R., Kim, J. E., Yun, W. B., Choi, J. Y., Park, J. J., Kim, H. R., Song, B. R., Choi, Y. W., Kim, K. M., & Hwang, D. Y. (2017). Lipolytic effect of novel extracts from mulberry (Morus alba) leaves fermented with Cordyceps militaris in the primary adipocytes derived from SD rats. Laboratory Animal Research, 33(3), 270–279.
- Lee, S., Lee, M. S., Chang, E., Lee, Y., Lee, J., Kim, J., Kim, C. T., Kim, I. H., & Kim, Y. (2020). Mulberry fruit extract promotes serum HDL-cholesterol levels and suppresses hepatic microRNA-33 expression in rats fed high cholesterol/cholic acid diet. Nutrients, 12(5), 1499.
- Lee, Y., Lee, E., Lee, M.-S., Lee, S., Kim, C., & Kim, Y. (2019). Hypolipidemic effect of mulberry leaf extract in rats fed a high-cholesterol diet (P06-014-19). Current Developments in Nutrition, 3(1) nzz031–P06.
- Li, D., Zhu, M., Liu, X., Wang, Y., & Cheng, J. (2020). Insight into the effect of microcapsule technology on the processing stability of mulberry polyphenols. LWT, 126, 1–8.
- Li, Q., Dai, Y., Zou, Y., Liao, S., Shen, W., Hu, T., & Liu, F. (2018). Mulberry (Morus atropurpurea Roxb.) leaf polyphenols inhibits adipogenesis and lipogenesis-related gene expression in 3T3-L1 adipocytes. Journal of Food Biochemistry, 42(5), 1–12.
- Li, R., Xue, Z., Jia, Y., Wang, Y., Li, S., Zhou, J., Liu, J., Zhang, M., He, C., & Chen, H. (2021). Polysaccharides from mulberry (Morus alba L.) leaf prevents obesity by inhibiting pancreatic lipase in high-fat diet induced mice. International Journal of Biological Macromolecules, 192, 452–460.
- Li, Z., Chen, X., Chen, Y., Li, W., Feng, Q., Zhang, H., Huang, X., & Luo, L. (2020). Effects of dietary mulberry leaf extract on the growth, gastrointestinal, hepatic functions of Chinese giant salamander (Andrias davidianus). Aquaculture Research, 51(6), 2613–2623.
- Li, Z., Chen, X., Liu, G., Li, J., Zhang, J., Cao, Y., & Miao, J. (2021). Antioxidant activity and mechanism of resveratrol and polydatin isolated from mulberry (Morus alba L.). Molecules, 26(24), 7574.
- Liu, Y.-G., Yan, J.-L., Ji, Y.-Q., Nie, W.-J., & Jiang, Y. (2020). Black mulberry ethanol extract attenuates atherosclerosis-related inflammatory factors and downregulates PPARγ and CD36 genes in experimental atherosclerotic rats. Food & Function, 11(4), 2997–3005.
- Long, X. S., Liao, S. T., Li, E. N., Pang, D. R., Li, Q., Liu, S. C., Hu, T. G., & Zou, Y. X. (2021). The hypoglycemic effect of freeze-dried fermented mulberry mixed with soybean on type 2 diabetes mellitus. Food Science & Nutrition, 9(7), 3641–3654.
- Memete, A. R., Timar, A. V., Vuscan, A. N., Miere, F., Venter, A. C., & Vicas, S. I. (2022). Phytochemical composition of different botanical parts of Morus species, health benefits and application in food industry. Plants, 11(2), 152.
- Memon, A. A., Memon, N., Luthria, D. L., Bhanger, M. I., & Pitafi, A. A. (2010). Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan. Polish Journal of Food and Nutrition Sciences, 60(1), 25–32.
- Montgomery, D. C. (2017). Design and analysis of experiments (p. 680). John Wiley & Sons.
- Nandiyanto, A. B. D., Oktiani, R., & Ragadhita, R. (2019). How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology, 4(1), 97–118.
10.17509/ijost.v4i1.15806 Google Scholar
- Neamat-Allah, A. N., Mahmoud, E. A., & Mahsoub, Y. (2021). Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus. Fish & Shellfish Immunology, 108, 147–156.
- Nesello, L. A. N., Beleza, M. L. M. L., Mariot, M., Mariano, L. N. B., de Souza, P., Campos, A., Cechinel-Filho, V., Andrade, S. F., & da Silva, L. M. (2017). Gastroprotective value of berries: Evidences from methanolic extracts of Morus nigra and Rubus niveus fruits. Gastroenterology Research and Practice, 2017, 1–8.
- Oberley, L. W., & Spitz, D. R. (1984). Assay of superoxide dismutase activity in tumor tissue. In Methods in enzymology (Vol. 105, pp. 457–464). Academic Press.
- On-Nom, N., Suttisansanee, U., Tongmai, J., Khemthong, C., Chamchan, R., Prangthip, P., Hanboonkunupakarn, B., & Chupeerach, C. (2020). Consumption of anthocyanin-rich mulberry fruit jelly with a high-fat meal decreases postprandial serum cardiometabolic risk factors in dyslipidemia subjects. Journal of Nutrition and Metabolism, 2020, 1–9.
- Ouyang, J., Hou, Q., Wang, M., Zhao, W., Feng, D., Pi, Y., & Sun, X. (2020). Effects of dietary mulberry leaf powder on growth performance, blood metabolites, meat quality, and antioxidant enzyme-related gene expression of fattening Hu lambs. Canadian Journal of Animal Science, 100(3), 510–521.
- Özgen, M., Serçe, S., & Kaya, C. (2009). Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Scientia Horticulturae, 119(3), 275–279.
- Parekh, A. C., & Jung, D. H. (1970). Cholesterol determination with ferric acetate-uranium acetate and sulfuric acid-ferrous sulfate reagents. Analytical Chemistry, 42(12), 1423–1427.
- Park, S., Kim, D. S., Wu, X., & Yi, Q. J. (2018). Mulberry and dandelion water extracts prevent alcohol-induced steatosis with alleviating gut microbiome dysbiosis. Experimental Biology and Medicine, 243(11), 882–894.
- Park, S. W., Shin, K. C., Yoou, S.-K., Park, H. J., Eun, S. H., Bae, Y. M., Lee, H. M., Chae, H. J., Chae, S. W., & Choi, B. H. (2019). Effects of an ethanolic extract of mulberry fruit on blood pressure and vascular remodeling in spontaneous hypertensive rats. Clinical and Experimental Hypertension, 41(3), 280–286.
- Pawlowska, A. M., Oleszek, W., & Braca, A. (2008). Quali-quantitative analyses of flavonoids of Morus nigra L. and Morus alba L.(Moraceae) fruits. Journal of Agricultural and Food Chemistry, 56(9), 3377–3380.
- Pothinuch, P., Miyamoto, A., Nguyen, H. T. T., & Tongchitpakdee, S. (2017). Vasodilatory effects of mulberry (Morus spp.) leaf extract on porcine cerebral arteries in vitro: Possible underlying mechanisms. Journal of Functional Foods, 38, 151–159.
- Razavi, R., Molaei, R., Moradi, M., Tajik, H., Ezati, P., & Yordshahi, A. S. (2020). Biosynthesis of metallic nanoparticles using mulberry fruit (Morus alba L.) extract for the preparation of antimicrobial nanocellulose film. Applied Nanoscience, 10(2), 465–476.
- Rice, E., Epstein, M., Witter, R. F., & Platt, H. A. (1970). Triglycerides (“neutral fat”) in serum. In Standard methods of clinical chemistry (Vol. 6, pp. 215–222). Academic Press.
- Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A., Hafeman, D. G., & Hoekstra, W. (1973). Selenium: Biochemical role as a component of glutathione peroxidase. Science, 179(4073), 588–590.
- Sánchez-Salcedo, E. M., Mena, P., García-Viguera, C., Hernández, F., & Martínez, J. J. (2015). (poly) phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. Journal of Functional Foods, 18, 1039–1046.
- Senoner, T., & Dichtl, W. (2019). Oxidative stress in cardiovascular diseases: Still a therapeutic target? Nutrients, 11(9), 2090.
- Shahani, S., Salehi, M., & Akbari, J. (2017). Evaluation of the effect of mouthwash containing black mulberry (Morus nigra L.) fruit juice for treatment of gingivitis. Research Journal of Pharmacognosy, 4(2017), 35.
- Silva, D. H. A. D., Barbosa, H. D. M., Beltrão, R. L. D. A., Silva, C. D. F. O., Moura, C. A., Castro, R. N., Almeida, J. R. G. D. S., Gomes, D. A., & Lira, E. C. (2020). Hexane fraction from Brazilian Morus nigra leaves improved oral carbohydrate tolerance and inhibits α-amylase and α-glucosidase activities in diabetic mice. Natural Product Research, 35(22), 1–4.
- Simonovic, N., Jakovljevic, V., Jeremic, J., Finderle, Z., Srejovic, I., Nikolic Turnic, T., Milosavljevic, I., & Zivkovic, V. (2019). Comparative effects of calcium and potassium channel modulators on ischemia/reperfusion injury in the isolated rat heart. Molecular and Cellular Biochemistry, 450(1), 175–185.
- Singh, S., Maurya, D., Shoaib, A., Tripathi, A., & Singh, D. (2021). Phytochemical analysis and antidiabetic efficacy of Morus rubra. Journal of the Indian Chemical Society, 98(10), 100170.
- Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158.
- Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394.
- Son, M., Oh, S., Lee, H. S., Ryu, B., Jiang, Y., Jang, J. T., Jeon, Y. J., & Byun, K. (2019). Pyrogallol-phloroglucinol-6, 6′-bieckol from Ecklonia cava improved blood circulation in diet-induced obese and diet-induced hypertension mouse models. Marine Drugs, 17(5), 272.
- Stevens, J., Tsang, W., & Newall, R. (1983). Measurement of the enzymes lactate dehydrogenase and creatine kinase using reflectance spectroscopy and reagent strips. Journal of Clinical Pathology, 36(12), 1371–1376.
- Suryadinata, R. V., & Wirjatmadi, B. (2021). The molecular pathways of lung damage by e-cigarettes in male Wistar rats. Sultan Qaboos University Medical Journal, 21(3), 436–441.
- Suttisansanee, U., Charoenkiatkul, S., Jongruaysup, B., Tabtimsri, S., Siriwan, D., & Temviriyanukul, P. (2020). Mulberry fruit cultivar ‘Chiang Mai’ prevents beta-amyloid toxicity in PC12 neuronal cells and in a drosophila model of Alzheimer's disease. Molecules, 25(8), 1837.
- Targhi, R. G., Homayoun, M., Mansouri, S., Soukhtanloo, M., Soleymanifard, S., & Seghatoleslam, M. (2017). Radio protective effect of black mulberry extract on radiation-induced damage in bone marrow cells and liver in the rat. Radiation Physics and Chemistry, 130, 297–302.
- Tata, C. M., Sewani-Rusike, C. R., Oyedeji, O. O., Mahlakata, F., Shauli, M., & Nkeh-Chungag, B. N. (2020). Senecio serratuloides extract prevents the development of hypertension, oxidative stress and dyslipidemia in nitric oxide-deficient rats. Journal of Complementary and Integrative Medicine, 17(2), 1–11.
10.1515/jcim-2018-0073 Google Scholar
- Thabti, I., Elfalleh, W., Hannachi, H., Ferchichi, A., & Campos, M. D. G. (2012). Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC–MS. Journal of Functional Foods, 4(1), 367–374.
- Trak, D., & Arslan, Y. (2021). Synthesis of silver nanoparticles using dried black mulberry (Morus nigra L.) fruit extract and their antibacterial and effective dye degradation activities. Inorganic and Nano-Metal Chemistry, 1–13.
- Tsurudome, N., Minami, Y., & Kajiya, K. (2022). Fisetin, a major component derived from mulberry (Morus australis Poir.) leaves, prevents vascular abnormal contraction. BioFactors, 48(1), 56–66.
- Varghese, S. M., & Thomas, J. (2019). Polyphenolic constituents in mulberry leaf extract (M. latifolia L. cv. BC259) and its antidiabetic effect in streptozotocin induced diabetic rats. Pakistan Journal of Pharmaceutical Sciences, 32(1), 69–74.
- Wang, C., Cheng, W., Bai, S., Ye, L. I., Du, J., Zhong, M., Liu, J., Zhao, R., & Shen, B. (2019). White mulberry fruit polysaccharides enhance endothelial nitric oxide production to relax arteries in vitro and reduce blood pressure in vivo. Biomedicine and Pharmacotherapy, 116, 109022.
- Wang, Y., Yu, Z., Jiang, J., Li, Y., & Yu, S. (2021). Mulberry leaf attenuates atherosclerotic lesions in patients with coronary heart disease possibly via 1-Deoxynojirimycin: A placebo-controlled, double-blind clinical trial. Journal of Food Biochemistry, 45(1), e13573.
- Yazdankhah, S., Hojjati, M., & Azizi, M. H. (2019). Extraction of phenolic compounds from black mulberry using aqueous, ethanol and aqueous-ethanol solvents: Effects of heat treatments on chemical properties of the extracts. Nutrition and Food Sciences Research, 6(3), 39–47.
- Yilmaz, S., Ucar, A., & Göktaş, B. (2019). Genotoxic and genoprotective potential of black mulberry (Morus nigra) fruit. Anais da Academia Brasileira de Ciências, 91(4), 1–8.
- Zeni, A. L. B., Moreira, T. D., Dalmagro, A. P., Camargo, A., Bini, L. A., Simionatto, E. L., & Scharf, D. R. (2017). Evaluation of phenolic compounds and lipid-lowering effect of Morus nigra leaves extract. Anais da Academia Brasileira de Ciências, 89(4), 2805–2815.
- Zoofishan, Z., Hohmann, J., & Hunyadi, A. (2018). Phenolic antioxidants of Morus nigra roots, and antitumor potential of morusin. Phytochemistry Reviews, 17(5), 1031–1045.
- Zou, T.-B., Wang, M., Gan, R.-Y., & Ling, W.-H. (2011). Optimization of ultrasound-assisted extraction of anthocyanins from mulberry, using response surface methodology. International Journal of Molecular Sciences, 12(5), 3006–3017.