Protective effects of epigallocatechin-3-o-gallate combined with organic selenium against transforming growth factor-beta 1-induced fibrosis in LX-2 cells
Lin Zhang
Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing - original draft
Search for more papers by this authorJia-Ying Xu
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
Contribution: Conceptualization, Funding acquisition, Investigation, Project administration, Resources, Supervision
Search for more papers by this authorLinxi Yuan
Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
Contribution: Investigation, Resources, Validation
Search for more papers by this authorXue-Bin Yin
Key Laboratory for Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
Contribution: Funding acquisition, Resources, Validation
Search for more papers by this authorCorresponding Author
Yun-Hong Li
Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
Correspondence
Yun-Hong Li and Li-Qiang Qin, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
Email: [email protected] (Y. H. L) and [email protected] (L. Q. Q.)
Contribution: Investigation, Supervision, Validation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Li-Qiang Qin
Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
Correspondence
Yun-Hong Li and Li-Qiang Qin, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
Email: [email protected] (Y. H. L) and [email protected] (L. Q. Q.)
Contribution: Funding acquisition, Investigation, Project administration, Resources, Supervision, Validation, Writing - review & editing
Search for more papers by this authorLin Zhang
Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
Contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing - original draft
Search for more papers by this authorJia-Ying Xu
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
Contribution: Conceptualization, Funding acquisition, Investigation, Project administration, Resources, Supervision
Search for more papers by this authorLinxi Yuan
Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
Contribution: Investigation, Resources, Validation
Search for more papers by this authorXue-Bin Yin
Key Laboratory for Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou, China
Contribution: Funding acquisition, Resources, Validation
Search for more papers by this authorCorresponding Author
Yun-Hong Li
Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
Correspondence
Yun-Hong Li and Li-Qiang Qin, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
Email: [email protected] (Y. H. L) and [email protected] (L. Q. Q.)
Contribution: Investigation, Supervision, Validation, Writing - review & editing
Search for more papers by this authorCorresponding Author
Li-Qiang Qin
Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
Correspondence
Yun-Hong Li and Li-Qiang Qin, Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
Email: [email protected] (Y. H. L) and [email protected] (L. Q. Q.)
Contribution: Funding acquisition, Investigation, Project administration, Resources, Supervision, Validation, Writing - review & editing
Search for more papers by this authorAbstract
In this study, we investigated the protective effects and possible mechanism of epigallocatechin-3-o-gallate (EGCG) combined with organic selenium in transforming growth factor (TGF)-β1-activated LX-2 cells. After 12 h of starvation, LX-2 cells were treated with 10 ng/ml of recombinant TGF-β1 and different concentrations of EGCG, L-selenomethionine (L-SeMet), or L-selenomethylcysteine (L-SeMC) for 24 h. We found that 100 and 200 μM EGCG combined with 1 mM L-SeMet or L-SeMC showed a synergistic effect in decreasing the survival rate of activated LX-2 cells. In addition, the combination of 100 mM EGCG and 1 mM L-SeMet or L-SeMC promoted the apoptosis of activated LX-2 cells. Compared with the EGCG treatment group, the combination intervention group had significantly suppressed levels of hepatic stellate cell activation markers including alpha-smooth muscle actin, collagen type I alpha 1, collagen type III alpha 1, 5-hydroxytryptophan (5-HT), and 5-HT receptors 2A and 2B. Moreover, interleukin-10 levels were decreased, while TGF-β1 levels were increased after TGF-β1 activation in LX-2 culture medium, whereas the combin1ation intervention reversed this phenomenon. The combination treatment had a more pronounced effect than any single treatment at the same dose. These results demonstrated that the combination of EGCG and organic selenium synergistically improves the TGF-β1-induced fibrosis of LX-2 cells to some extent by promoting apoptosis and inhibiting cell activation.
Practical applications
Here, we found that the effects of epigallocatechin-3-o-gallate (EGCG) + L-selenomethionine or L-selenomethylcysteine were more pronounced than those of EGCG alone. Future studies should investigate the protective effects of green tea and selenium-enriched green tea against hepatic fibrosis and explore the differences in their molecular mechanisms. The results of this study will be helpful for the development and utilization of selenium-enriched tea for food processing and health supplement production.
CONFLICT OF INTEREST
The authors declared that they have no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- Amireault, P., Sibon, D., & Cote, F. (2013). Life without peripheral serotonin: Insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks. ACS Chemical Neuroscience, 4, 64–71. https://doi.org/10.1021/cn300154j
- Arendt, B. M., Comelli, E. M., Ma, D. W., Lou, W., Teterina, A., Kim, T., Fung, S. K., Wong, D. K., McGilvray, I., Fischer, S. E., & Allard, J. P. (2015). Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology, 61, 1565–1578. https://doi.org/10.1002/hep.27695
- Atallah, M., Elaidy, S. M., & Tawfik, M. K. J. P. R. (2017). Assessment of the possible roles of SB-269970 versus ketanserin on carbon tetrachloride-induced liver fibrosis in rats: Oxidative stress/TGF-β 1 -induced HSCs activation pathway. Pharmacological Reports, 70, 509–518. https://doi.org/10.1016/j.pharep.2017.11.017
- Beaudry, P., Hadengue, A., Callebert, J., Gaudin, C., Soliman, H., Moreau, R., Launay, J. M., & Lebrec, D. (1994). Blood and plasma 5-hydroxytryptamine levels in patients with cirrhosis. Hepatology, 20, 800–803. https://doi.org/10.1002/hep.1840200405
- Bose, M., Lambert, J. D., Ju, J., Reuhl, K. R., Shapses, S. A., & Yang, C. S. (2008). The major green tea polyphenol, (−)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. Journal of Nutrition, 138, 1677–1683. https://doi.org/10.1093/jn/138.9.1677
- Burk, R. F., Hill, K. E., Motley, A. K., Byrne, D. W., & BKJ, N. (2015). Selenium deficiency occurs in some patients with moderate-to-severe cirrhosis and can be corrected by administration of selenate but not selenomethionine: A randomized controlled trial. American Journal of Clinical Nutrition, 102, 1126–1133. https://doi.org/10.3945/ajcn.115.110932
- Cai, X., Hayashi, S., Fang, C., Hao, S., Wang, X., Nishiguchi, S., Tsutsui, H., & Sheng, J. J. (2017). Pu'erh tea extract-mediated protection against hepatosteatosis and insulin resistance in mice with diet-induced obesity is associated with the induction of de novo lipogenesis in visceral adipose tissue. Journal of Gastroenterology, 52, 1240–1251. https://doi.org/10.1007/s00535-017-1332-3
- Chen, A. P., Zhang, L., Xu, J. Y., & Tang, J. (2002). The antioxidant (−)-epigallocatechin-3-gallate inhibits activated hepatic stellate cell growth and suppresses acetaldehyde-induced gene expression. Biochemical Journal, 368, 695–704. https://doi.org/10.1042/BJ20020894
- Chen, L., Chen, G., Guo, Y., Liu, L., Xiao, L., Fan, W., Shi, B., & Qian, Y. (2014). Ketanserin, a serotonin 2A receptor antagonist, alleviates ischemia-related biliary fibrosis following donation after cardiac death liver transplantation in rats. Liver Transplantation, 20, 1317–1326. https://doi.org/10.1002/lt.23947
- de las Casas-Engel, M., Dominguez-Soto, A., Sierra-Filardi, E., Bragado, R., Nieto, C., Puig-Kroger, A., Samaniego, R., Loza, M., Corcuera, M. T., Gomez-Aguado, F., Bustos, M., Sanchez-Mateos, P., & Corbi, A. L. (2013). Serotonin skews human macrophage polarization through HTR2B and HTR7. Journal of Immunology, 190, 2301–2310. https://doi.org/10.4049/jimmunol.1201133
- Ding, M., Potter, J. J., Liu, X. P., Torbenson, M. S., & Mezey, E. (2010). Selenium supplementation decreases hepatic fibrosis in mice after chronic carbon tetrachloride administration. Biological Trace Element Research, 133, 83–97. https://doi.org/10.1007/s12011-009-8414-
- Ding, Y., Sun, X., Chen, Y. N., Deng, Y., & Qian, K. (2015). Epigallocatechin gallate attenuated non-alcoholic steatohepatitis induced by methionine- and choline-deficient diet. Gastroenterology Research and Practice, 761, 405–412. https://doi.org/10.1016/j.ejphar.2015.05.005
- Ebrahimkhani, M. R., Oakley, F., Murphy, L. B., Mann, J., Moles, A., Perugorria, M. J., Ellis, E., Lakey, A. F., Burt, A. D., Douglass, A., Wright, M. C., White, S. A., Jaffre, F., Maroteaux, L., & Mann, D. A. (2011). Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nature Medicine, 17, 1668–1673. https://doi.org/10.1038/nm.2490
- El-Tanbouly, D. M., Wadie, W., Sayed, R. H. J. T., & Pharmacology, A. (2017). Modulation of TGF-β/Smad and ERK signaling pathways mediates the anti-fibrotic effect of mirtazapine in mice. Toxicology and Applied Pharmacology, 329, 224–230. https://doi.org/10.1016/j.taap.2017.06.012
- Gan, D. K., Zhang, W., Huang, C. K., Chen, J., He, W. H., Wang, A. J., Li, B. M., & Zhu, X. (2018). Ursolic acid ameliorates CCl4-induced liver fibrosis through the NOXs/ROS pathway. Journal of Cellular Physiology, 233, 6799–6813. https://doi.org/10.1002/jcp.26541
- Hamid, M., Abdulrahim, Y., Liu, D., Gang, Q., Khan, A., & Huang, K. (2018). The hepatoprotective effect of selenium-enriched yeast and gum Arabic combination on carbon tetrachloride-induced chronic liver injury in rats. Journal of Food Science, 83, 525–534. https://doi.org/10.1111/1750-3841.14030
- Hauso, O., Gustafsson, B. I., Nordrum, I. S., & Waldum, H. L. (2008). The effect of terguride in carbon tetrachloride-induced liver fibrosis in rat. Experimental Biology Medicine (Maywood), 233, 1385–1388. https://doi.org/10.3181/0804-RM-137
- Kim, D. C., Jun, D. W., Kwon, Y. I., Lee, K. N., Lee, H. L., Lee, O. Y., Yoon, B. C., Choi, H. S., & Kim, E. K. (2013). 5-HT2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis. Liver International, 33, 535–543. https://doi.org/10.1111/liv.12110 Epub 2013 Jan 31.
- Kumar, S., Wang, J., Rani, R., & Gandhi, C. R. (2016). Hepatic deficiency of augmenter of liver regeneration exacerbates alcohol-induced liver injury and promotes fibrosis in mice. PLoS One, 11, e0147864. https://doi.org/10.1371/journal.pone.0147864
- Lee, Y. A., Wallace, M. C., & Friedman, S. L. (2015). Pathobiology of liver fibrosis-A translational success story. Gut, 64, 830–841. https://doi.org/10.1136/gutjnl-2014-306842
- Lesurtel, M., Soll, C., Humar, B., & Clavien, P. A. (2012). Serotonin: A double-edged sword for the liver? The Surgeon, 10, 107–113. https://doi.org/10.1016/j.surge.2011.11.002
- Li, H. Y., Ju, D., Zhang, D. W., Li, H., Kong, L. M., Guo, Y., Li, C., Wang, X. L., Chen, Z. N., & Bian, H. (2015). Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis. Scientific Reports, 5, 16552. https://doi.org/10.1038/srep16552
- Li, T., Weng, S. G., Leng, X. S., Peng, J. R., Wei, Y. H., Mou, D. C., & Wang, W. X. (2006). Effects of 5-hydroxytamine and its antagonists on hepatic stellate cells. Hepatobiliary Pancreatic Diseases International, 5, 96–100.
- Liu, Y., Liu, Q., Hesketh, J., Huang, D., Gan, F., Hao, S., Tang, S., Guo, Y., & Huang, K. J. (2018). Protective effects of selenium-glutathione-enriched probiotics on CCl4-induced liver fibrosis. Journal of Nutritional Biochemistry, 58, 138–149. https://doi.org/10.1016/j.jnutbio.2018.04.011
- Liu, Y. H., Liu, Q., Ye, G. P., Khan, A., Liu, J., Gan, F., Zhang, X., Kumbhar, S., & Huang, K. H. (2015). Protective effects of selenium-enriched probiotics on carbon tetrachloride-induced liver fibrosis in rats. Journal of Agricultural and Food Chemistry, 63, 242–249. https://doi.org/10.1021/jf5039184
- Ma, L., Zeng, Y., Wei, J., Yang, D., Ding, G., Liu, J., Shang, J., Kang, Y., & Ji, X. (2018). Knockdown of LOXL1 inhibits TGF-β1-induced proliferation and fibrogenesis of hepatic stellate cells by inhibition of Smad2/3 phosphorylation. Biomedicine & Pharmacotherapy, 107, 1728–1735. https://doi.org/10.1016/j.biopha.2018.08.156
- Marcellin, P., Gane, E., Buti, M., Afdhal, N., Sievert, W., Jacobson, I. M., Washington, M. K., Germanidis, G., Flaherty, J. F., Aguilar Schall, R., Bornstein, J. D., Kitrinos, K. M., Subramanian, G. M., McHutchison, J. G., & Heathcote, E. J. (2013). Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: A 5-year open-label follow-up study. The Lancet, 381, 468–475. https://doi.org/10.1016/S0140-6736(12)61425-1
- Mezey, E., Liu, X., & Potter, J. J. (2011). The combination of selenium and vitamin E inhibits type I collagen formation in cultured hepatic stellate cells. Biological Trace Element Research, 140, 82–94. https://doi.org/10.1007/s12011-010-8672-7
- Perepelyuk, M., Terajima, M., Wang, A. Y., Georges, P. C., Janmey, P. A., Yamauchi, M., & Wells, R. G. (2013). Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury. American Journal of Physiology-Gastrointestinal and Liver Physiology, 304, G605–G614. https://doi.org/10.1152/ajpgi.00222.2012
- Polat, B., Halici, Z., Cadirci, E., Karakus, E., Bayir, Y., Albayrak, A., & Unal, D. (2017). Liver 5-HT7 receptors: A novel regulator target of fibrosis and inflammation-induced chronic liver injury in vivo and in vitro. International Immunopharmacology, 43, 227–235. https://doi.org/10.1016/j.intimp.2016.12.023
- Polyzos, S. A., Kountouras, J., Goulas, A., & Duntas, L. (2020). Selenium and selenoprotein P in nonalcoholic fatty liver disease. Hormones (Athens, Greece), 19, 61–72. https://doi.org/10.1007/s42000-019-00127-3
- Puche, J. E., Saiman, Y., & Friedman, S. L. J. C. P. (2013). Hepatic stellate cells and liver fibrosis. Comprehensive Physiology, 3, 1473–1492.
- Reja, M., Makar, M., Visaria, A., Marino, D., & Rustgi, V. (2020). Increased serum selenium levels are associated with reduced risk of advanced liver fibrosis and all-cause mortality in nafld patients: National health and nutrition examination survey (NHANES) III. Annals of Hepatology, 19, 635–640. https://doi.org/10.1016/j.aohep.2020.07.006
- Reynaert, H., Thompson, M. G., Thomas, T., & Geerts, A. (2002). Hepatic stellate cells: Role in microcirculation and pathophysiology of portal hypertension. Gut, 50, 571–581. https://doi.org/10.1038/s41575-018-0097-3
- Robert, S., Gicquel, T., Bodin, A., Lagente, V., & Boichot, E. J. P. O. (2016). Characterization of the MMP/TIMP imbalance and collagen production induced by IL-1β or TNF-α release from human hepatic stellate cells. PLoS One, 11, e0153118. https://doi.org/10.1016/j.jhep.2013.03.033
- Rockey, D. C. (2001). Hepatic blood flow regulation by stellate cells in normal and injured liver. Seminars in Liver Disease, 21, 337–349. https://doi.org/10.1055/s-2001-17551
- Ruddell, R. G., Oakley, F., Hussain, Z., Yeung, I., Bryan-Lluka, L. J., Ramm, G. A., & Mann, D. A. (2006). A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. American Journal of Pathology, 169, 861–876. https://doi.org/10.2174/1389200220666190725115503
- Santamarina, A. B., Oliveira, J. L., Silva, F. P., Carnier, J., Mennitti, L. V., Santana, A. A., de Souza, G. H. I., Ribeiro, E. B., do Nascimento, C. M. O., Lira, F. S., & Oyama, L. M. (2015). Green tea extract rich in epigallocatechin-3-gallate prevents fatty liver by AMPK activation via LKB1 in mice fed a high-fat diet. PLoS One, 10, e0141227. https://doi.org/10.1371/journal.pone.0141227
- Soll, C., Jang, J. H., Riener, M. O., Moritz, W., Wild, P. J., Graf, R., & Clavien, P. A. (2010). Serotonin promotes tumor growth in human hepatocellular cancer. Hepatology, 51, 1244–1254. https://doi.org/10.1002/hep.23441
- Stasi, C., Sadalla, S., & Milani, S. (2019). The relationship between the serotonin metabolism, gut-microbiota and the gut-brain axis. Current Drug Metabolism, 20, 646–655. https://doi.org/10.2174/1389200220666190725115503
- Sun, M. X., & Kisseleva, T. (2015). Reversibility of liver fibrosis. Clinics and Research in Hepatology and Gastroenterology, 39, S60–S63. https://doi.org/10.1016/j.clinre.2015.06.015
- Tecott, L. H. (2007). Serotonin and the orchestration of energy balance. Cell Metabolism, 6, 352–361. https://doi.org/10.1016/j.cmet.2007.09.012
- Thompson, A. I., Conroy, K. P., & Henderson, N. C. (2015). Hepatic stellate cells: Central modulators of hepatic carcinogenesis. BMC Gastroenterology, 15, 63. https://doi.org/10.1186/s12876-015-0291-5
- Thuluvath, P. J., & Triger, D. R. (1992). Selenium in chronic liver-disease. Journal of Hepatology, 14, 176–182. https://doi.org/10.1016/0168-8278(92)90155-i
- Valea, A., & Georgescu, C. E. (2018). Selenoproteins in human body: Focus on thyroid pathophysiology. Hormones (Athens, Greece), 17, 183–196. https://doi.org/10.1007/s42000-018-0033-5
- Yasuda, Y., Shimizu, M., Sakai, H., Iwasa, J., Kubota, M., Adachi, S., Osawa, Y., Tsurumi, H., Hara, Y., & Moriwaki, H. (2009). (−)-Epigallocatechin gallate prevents carbon tetrachloride-induced rat hepatic fibrosis by inhibiting the expression of the PDGFRbeta and IGF-1R. Chemico-Biological Interactions, 182, 159–164. https://doi.org/10.1016/j.cbi.2009.07.01
- Yin, C. Y., Evason, K. J., Asahina, K., & Stainier, D. Y. R. (2013). Hepatic stellate cells in liver development, regeneration, and cancer. Journal of Clinical Investigation, 123, 1902–1910. https://doi.org/10.1172/JCI66369
- Yu, D. K., Zhang, C. X., Zhao, S. S., Zhang, S. H., Zhang, H., Cai, S. Y., Shao, R. G., & He, H. W. (2015). The anti-fibrotic effects of epigallocatechin-3-gallate in bile duct-ligated cholestatic rats and human hepatic stellate LX-2 cells are mediated by the PI3K/Akt/Smad pathway. Acta Pharmacologica Sinica, 36, 473–482. https://doi.org/10.1038/aps.2014.15
- Yu, J. S., Marsh, S., Hu, J. B., Feng, W. K., & Wu, C. D. (2016). The pathogenesis of nonalcoholic fatty liver disease: Interplay between diet, gut microbiota, and genetic background. Gastroenterology Research and Practice, 6, 1–13. https://doi.org/10.1155/2016
- Zhang, K., Han, X., Zhang, Z., Zheng, L., Hu, Z., Yao, Q., Cui, H., Shu, G., Si, M., & Li, C. (2017). The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nature Communications, 8, 1–16. https://doi.org/10.1038/s41467-017-00204-4
- Zhang, L., Xu, J. Y., Wei, Y., Gao, S. L., Wang, L., Zheng, J. Y., Gu, M., & Qin, L. Q. (2021). Protective effect of selenium-enriched green tea on carbon tetrachloride-induced liver fibrosis. Biological Trace Element Research, 200, 2233–2238. https://doi.org/10.1007/s12011-021-02823